

• Angel Varela-Lafuente

- Ana Isabel García-Diez
- Victor Blázquez-Martínez
- Carolina Camba-Fabal
- Sonia Zaragoza-Fernandez
- Jose Luis Mier-Buenhombre
- Jorge López-Beceiro

Dr Ingeniero Industrial Dra. Ingeniera Industrial Dr. Ingeniero Industrial Ingeniera Industrial Ingeniero Industrial Doctor en Ciencias Quimicas

Ingeniero Industrial

Departamento de Ingeniería Industrial II, Universidade da Coruña Departamento de Ingeniería Industrial II, Universidade da Coruña Grupo de Siderúrgia. ETSII. Universidad Politécnica de Madrid Departamento de Ingeniería Industrial II, Universidade da Coruña Departamento de Ingeniería Industrial II, Universidade da Coruña Departamento de Ingeniería Industrial II, Universidade da Coruña Departamento de Ingeniería Industrial II, Universidade da Coruña

ABSTRACT

- This work studies the abrasion wear behavior of four cast irons: white iron, ferritic ductile iron, ductile iron with boron and Nihard. Chemical composition and metallographic structure were determined in all of them. The abrasion wear behavior study was carried out by pin on disk test setting load, speed and pin material and calculating the weight loss. Also the variation of the friction coefficient and surface hardness was calculated
- Key words: Wear, abrasion, cast

in all the cases.

RESUMEN

En el presente trabajo se estudia el comportamiento frente al desgaste por abrasión de cuatro fundiciones: blanca hipoeutéctica, esferoidal ferrítica, Ni-hard y esferoidal con boro. Las cuatro fundiciones han sido caracterizadas mediante su composición química y su estructura metalográfica.

El comportamiento frente al desgaste abrasivo se ha estudiado utilizando el ensayo "pin on disk" manteniendo fijas las condiciones de ensayo en cuanto a carga, velocidad y tipo de pin, calculando el desgaste producido por pesada. Asimismo se determina la variación del coeficiente de fricción en cada caso. Por último también se han medido las durezas superficiales de cada muestra.

Palabras clave: Desgaste, abrasión, fundiciones.

1. INTRODUCCIÓN

Las fundiciones han sido tradicionalmente utilizadas para la fabricación de piezas de maquinaria sometidas a condiciones de trabajo fuerte desgaste, fundamentalmente abrasivo, aplicadas en sectores industriales como la minería, cementero, transporte ferroviario, laminación en caliente y en frío de acero, etc. Ello debido por un lado a su coste más barato y por otro a sus buenas

características tecnológicas que hacen factible, dada su más baja temperatura de fusión y su buena colabilidad, el obtener por moldeo piezas de forma muy compleja tanto de grandes dimensiones como pequeñas, todo ello a pesar de que las propiedades mecánicas no son semejantes a las de los aceros pero sin embargo presentan en general buena resistencia al desgaste y en algunos casos, las fundiciones grises, absorben muy bien las vibraciones [1].

Entre las fundiciones que se utilizan frente al desgaste una de ellas son las llamadas fundiciones blancas hipoeutécticas que estructuralmente se caracterizan por la presencia de cementita en proporciones tanto mayores cuanto mayor sea su contenido en carbono, lo que da lugar a que su dureza sea alta y consecuentemente también su fragilidad, creciendo ambas con el contenido en carbono, al tiempo que disminuye su resistencia a tracción. Debido a su gran fragilidad se limita su empleo a piezas que deban poseer una alta resistencia al desgaste abrasivo sin estar sometidas a altas exigencias de choque [2].

Otro tipo de fundiciones resistentes al desgaste son las fundiciones de grafito esferoidal, dadas a conocer por Morrogh y Williams en 1948 y obtenidas en estado bruto de colada mediante la adición de cerio y ferrosilicio al baño líquido. Posteriormente se sustituyó el papel del cerio por el magnesio

Tipo de Fundición	С	Si	Mn	S	P	В	Mg	Ni	Cr
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Blanca	2,50	0,80	1,00-	0,05	0,07	-	-	-	-
Grafito esferoidal	3,50	2,50	0,50	0,02	0,05	-	0,05	-	-
Boro	3,57	2,15	0,24	0,025	0,057	< 0,10	-	-	-
Ni-hard	2,75	0,50	0,50	0,02	0,04	-	-	4,50	2,00

Tabla 1. Composición química de las fundiciones estudiadas

añadido en forma de níquel-magnesio obteniéndose mejores resultados en cuanto a la obtención de los esferoides de grafito. Con este tipo de fundiciones y en estado bruto de colada pueden obtenerse propiedades mecánicas próximas a la de los aceros semiduros, aunque depende ello de la matriz que acompañe al grafito esferoidal. Una de sus propiedades más notables es su alta resistencia al desgaste motivada en gran parte al papel del grafito como lubricante de la superficie [3-9]. En 1959 la General Motors desarrolló un nuevo tipo de fundición semejante a la de grafito esferoidal que era posible obtener sin necesidad de agentes especiales de inoculación, añadiendo al caldo líquido boro bien en forma metálica o como bórax, ferro-boro, carburo de boro o boruro cálcico. Sus propiedades son muy semejantes a las de las fundiciones de grafito esferoidal si bien la morfología del grafito esferoidal es más imperfecta [2, 10].

Por último cabe hablar de la fundición blanca aleada conocida con el nombre de *Ni-hard* que debido a su mayor dureza y tenacidad sustituyen a las fundiciones blancas en utilizaciones de fuerte desgaste como revestimientos de molinos, martillos y piezas destinadas a la preparación y molienda de minerales. La presencia del Ni y el Cr como elementos aleantes da lugar a una estructura formada por gruesos cristales de carburos complejos eutécticos y granos de austenita conteniendo en su interior agujas de martensita.

2. EXPERIMENTAL

2.1. FUNDICIONES ESTUDIADAS

En este trabajo se ha estudiado el comportamiento frente al desgaste abrasivo de diferentes fundiciones. Para ello se ha empleado una fundición blanca hipoeutéctica, una fundición de grafito esferoidal, una fundición de grafito esferoidal aleada con boro y una fundición *Ni-hard*.

Las aleaciones han sido obtenidas en la planta piloto de fundición de la *Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid*.

La composición de cada una de las aleaciones, determinada mediante absorción atómica, analizador de carbono y azufre y fluorescencia de rayos X, se muestra a continuación en la tabla 1.

2.2. DETERMINACIÓN DE LA DUREZA

La dureza de las fundiciones se ha determinado mediante un durómetro *Vickers*, aplicando en todos los casos una carga de 100 kg. durante 30 s.

2.3. DETERMINACIÓN DE LA RESISTENCIA AL DESGASTE

Para determinar la resistencia al desgaste abrasivo de las fundiciones se ha empleado un *tribómetro pin on disk*, y se ha seguido la norma ASTM G99 "*Standard test method for wear testig with a pin-on-disk apparatus*".

Como pin se ha empleado una bola de acero con una dureza de 60 HRC, y la carga aplicada en todos los ensayos es de 10 N. La huella de desgaste realizada tiene un diámetro de 16 mm., y la velocidad lineal aplicada en cada caso en de 0,251 m/s. Cada uno de los ensayos tuvo una duración de 60 min y se efectuaron a temperatura ambiente.

Los resultados de desgaste están muy influidos por la rugosidad superficial, por lo que ha sido preciso realizar una preparación previa superficial con el objetivo de uniformar el acabado superficial de las cuatro fundiciones y minimizar la influencia del mismo [11,12]. En este caso la preparación superficial de las muestras ensayadas aseguró una rugosidad inferior a 0,5 micras en todos los casos.

La resistencia al desgaste se ha determinado en función del desgaste sufrido por cada muestra durante el ensayo. Para ello se ha medido la pérdida de masa experimentada por las muestras mediante pesada, de forma que cuanto mayor es la masa perdida peor es el comportamiento al desgaste y menor es la resistencia al desgaste abrasivo del material. También se ha determinado el coeficiente de fricción sufrido por cada muestra en cada momento del ensayo.

2.4. ANÁLISIS METALOGRÁFICO

Para completar el estudio se ha realizado un análisis metalográfico de las cuatro fundiciones mediante observación con microscopio óptico. Previamente se realizó una preparación superficial y ataque con Nital al 3 %.

Los resultados de desgaste están muy influidos por la rugosidad superficial, por lo que ha sido preciso realizar una preparación previa superficial con el objetivo de uniformar el acabado superficial de las cuatro fundiciones y minimizar la influencia del mismo

El comportamiento frente al desgaste abrasivo de diferentes fundiciones

3. RESULTADOS

3.1. DUREZA

En la figura 1 se muestran los resultados de dureza obtenidos en la escala *Vickers* para las cuatro fundiciones. La fundición *Ni-hard* es la que mayor valor de dureza presenta, y la fundición de grafito esferoidal sin boro la menor.

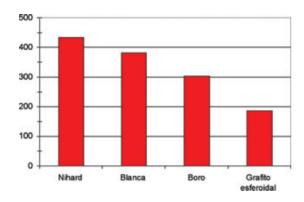


Fig. 1. Dureza Vickersl de las fundiciones

3.2. RESISTENCIA AL DESGASTE

En la figura 2 se muestra la pérdida de masa medida en cada ensayo de desgaste para las cuatro fundiciones. En este caso el mejor comportamiento al desgaste lo presenta la fundición *Ni-hard*, mientras que el peor resultado es de la fundición de grafito esferoidal y la fundición blanca.

El coeficiente de fricción es prácticamente constante durante el ensayo para las fundiciones *Ni-hard* y blanca, mientras que para las dos fundiciones que contienen grafito esferoidal el coeficiente de fricción en las primeras etapas del

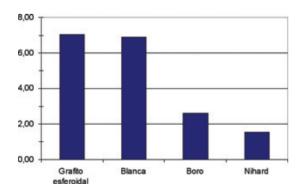


Fig. 2. Resultados del ensayo de desgaste

desgaste es mucho más elevado que durante el resto del mismo. En la figura 3 se muestran estos dos comportamientos tipo.

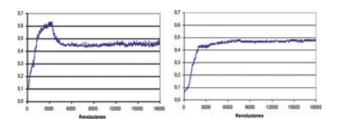


Fig. 3. Evolución del coeficiente de fricción durante el ensayo de desgaste para las fundiciones con grafito esferoidal (izqda.) y las fundiciones blancas y Ni-hard (dcha.)

La fundición blanca aleada conocida con el nombre de Ni-hard que debido a su mayor dureza y tenacidad sustituyen a las fundiciones blancas en utilizaciones de fuerte desgaste como revestimientos de molinos, martillos y piezas destinadas a la preparación y molienda de minerales

3.3. MICROESTRUCTURA

Las figuras 4, 5, 6 y 7 muestran las microestructuras obtenidas para la fundición blanca, de grafito esferoidal, de grafito esferoidal aleada con boro y *Ni-hard* respectivamente. En la figura 4 puede observarse la microestructura de la fundición blanca hipoeutéctica, formada por perlita ennegrecida y ledeburita transformada o pseudoledeburita, que está formada por perlita sobre fondo blanco de cementita manteniendo la morfología de la ledeburita eutéctica (austenita más cementita eutéctica).

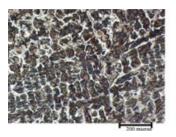
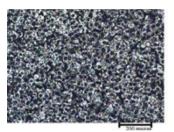



Fig. 4. Microestructura de la fundición blanca

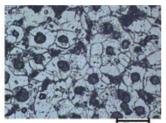
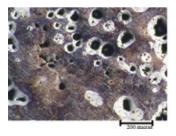



Fig. 5. Microestructura de la fundición de grafito esferoidal

La figura 5 muestra la microestructura de la fundición de grafito esferoidal, donde pueden apreciarse las esferas de grafito sobre fondo blanco ferrítico en el que se revela el borde de grano. En la figura 6 se aprecia la microestructura de la fundición de grafito esferoidal aleada con boro. Puede observarse la matriz perlítica con presencia de ojos de buey ferríticos orlando al grafito con morfología más o menos esferoidal.

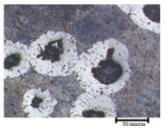
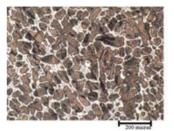



Fig. 6. Microestructura de la fundición de grafito esferoidal con boro

En la figura 7 se muestra la microestructura obtenida para la fundición blanca aleada Ni-hard. Se aprecian gruesos

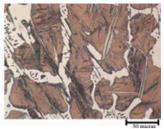


Fig. 7. Microestructura de la fundición Ni-hard

cristales de carburos complejos eutécticos blancos como microconstituyente matriz y granos grisáceos de austenita que contienen en su interior agujas de martensita oscurecidas. Los carburos mantienen la morfología ledeburítica y contienen pequeñas zonas grises de austenita.

4. DISCUSIÓN

En la figura 8 se han representado conjuntamente los resultados obtenidos para los ensayos de dureza *Vickers* y los de resistencia al desgaste.

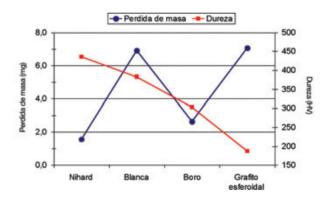


Fig. 8. Comparativa de los resultados de dureza y resistencia al desgaste

Según esta gráfica la fundición más dura (la fundición *Ni-hard*) es la que menos se desgasta durante el ensayo en el *pin on disk*. La fundición blanca tiene una dureza algo inferior a la *Ni-hard*, y su comportamiento al desgaste es muy inferior. Este desgaste excesivo se puede explicar si consideramos que durante el ensayo de desgaste se desprenden partículas duras de

La fundición de grafito esferoidal obtenida mediante la adición de boro presenta un valor de dureza notablemente inferior al de las fundiciones Ni-hard y blanca. La fundición de mayor dureza es la fundición Ni-hard, y es la que mejor se comporta frente al desgaste abrasivo de las cuatro fundiciones consideradas. La fundición blanca tiene una dureza algo inferior a la Ni-hard, y la de menor dureza es la de grafito esferoidal.

cementita que juegan el papel de abrasivo. De esta forma, el desgaste final del material será sensiblemente superior al que cabría esperar en función de la dureza del mismo.

La fundición de grafito esferoidal obtenida mediante la adición de boro presenta un valor de dureza notablemente inferior al de las fundiciones *Ni-hard* y blanca. Sin embargo, contrariamente a lo que cabría esperar en función de este parámetro, su respuesta al desgaste es sólo algo inferior a la de la fundición *Ni-hard* y mucho mejor que la de la blanca. En este caso este comportamiento se puede explicar si asumimos el papel lubricante que las partículas de grafito juegan en el proceso de desgaste abrasivo. En las primeras etapas de este proceso se desprenden las partículas de grafito, que posteriormente, y dada su escasa dureza, actúa como lubricante disminuyendo el desgaste experimentado por la fundición. Este comportamiento se refleja en la evolución del coeficiente de fricción que se mide en los ensayos de desgaste (figura 3 izquierda) [13, 14].

Asumiendo este papel del grafito, cabría esperar el mismo comportamiento en la fundición de grafito esferoidal. Sin embargo, observando las figuras 5 y 6 correspondientes a las microestructuras de las dos fundiciones de grafito esferoidal se pueden observar dos diferencias fundamentales. La primera de ellas es la matriz de las fundiciones y la segunda el tamaño y número de las partículas de grafito. La fundición aleada con boro presenta esferoides de grafito de mayor tamaño y en menor número, y además, estas partículas están rodeadas de ferrita sobre una matriz perlítica de mayor dureza. Esta distribución del grafito favorece el "arranque" de material en el proceso de desgaste y el efecto lubricante del mismo, por lo que la pérdida de masa se ve disminuida.

En el caso de la fundición de grafito esferoidal sin boro las partículas de grafito están presentes sobre una matriz ferrítica de menor dureza en mayor número y con un tamaño sensiblemente inferior al caso anterior, por lo que el efecto comentado anteriormente se vería disminuido puesto que la dureza de la fundición es muy inferior.

5. CONCLUSIONES

Se ha estudiado el comportamiento frente al desgaste abrasivo de cuatro fundiciones: una fundición blanca

hipoeutéctica, una fundición *Ni-hard* y dos fundiciones de grafito esferoidal, una de matriz ferrítica y otra de matriz perlítica aleada con boro.

La fundición de mayor dureza es la fundición *Ni-hard*, y es la que mejor se comporta frente al desgaste abrasivo de las cuatro fundiciones consideradas. La fundición blanca tiene una dureza algo inferior a la *Ni-hard*, y la de menor dureza es la de grafito esferoidal.

En cuanto al comportamiento al desgaste, la fundición blanca presenta un desgaste mayor al que cabría esperar en función del valor de dureza que presenta, mientras que la fundición de grafito esferoidal con matriz perlítica, obtenida mediante la adición de boro, tiene un comportamiento al desgaste muy semejante al de la fundición Ni-hard, a pesar de que su dureza es notablemente inferior.

169

Planta de fundición de acero

6. BIBLIOGRAFÍA

- [1] Henderson Harvey E. "Ductile iron. Our most ferrous casting material". *ASTM Special Technical Publication*. 1969, vol. 455, p. 29-53.
- [2] Blázquez-Víctor M. Metalografía de las aleaciones férreas. Madrid: Sección de Publicaciones de la ETSII (UPM), 1991. 330 p. ISBN: 84-7484-068-6.
- [3] Liu SL, Loper CR, Witter TH. "The role of graphitic inoculants in ductile iron". *Transactions of the American Foundrymen's Society*.1992, vol. 100, p. 899-906.
- [4] Subramanian SV, Kay Dar, Purdy GR. "Compacted graphite morphology control". *Transactions of the American Foundrymen's Society*. 1982, vol. 90, p. 589-603.
- [5] Schelleng RD. "Boron contamination of ductile iron". *Modern Castings*. 1967, vol. 52, núm. 4, p. 70.
- [6] *Quality control manual*. Ductile Iron Society Publication, 1991.
- [7] Suárez-Sanabria A, Fernández-Carrasquilla J. "Microestructura y propiedades mecánicas de una fundición esferoidal ferrítica en bruto de colada para su uso en piezas de grandes dimensiones". Revista de Metalurgia .Madrid, 2006, vol. 42, núm. 1, p. 18-31.

- [8] Gonzaga-Cinco R, Fernández-Carrasquilla J. "Dependencia de las propiedades mecánicas y de la composición química en la fundición de grafito esferoidal". *Revista de Metalurgia*. Madrid, 2006, vol. 42, núm. 2, p. 91-102.
- [9] Chang LC, Hsui IC, Lui ST. "Influence of graphite nodules on the particles erosion of spheroidal graphite cast irons". *Wear*. 2004, vol. 257, p. 1125-1132.
- [10] Varela Ángel, García Ana, Zaragoza Sonia, Mier José Luis, Barbadillo Fernando, García Laura. «Influencia de los tratamientos térmicos en el comportamiento frente al desgaste por abrasión de una fundición de grafito esferoidal obtenida mediante adición de boro» En: X Congreso Nacional de Propiedades Mecánicas de Sólidos, (Santiago de Compostela 5-8 de septiembre de 2006). 2006. p. 77-81.
- [11] Paredes R, Amico S, d'Oliveira A. "The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying". *Surface and Coatings Technology*. 2006, vol. 200, p. 3049-3055.
- [12] Li CJ, Ohmori Wang YY A. "Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings". *Thin Solid Films*. 2005, vol. 485, p. 141-147.
- [13] Chang LC, Hsui I.C, Chen LH, Lui ST. "Influence of graphite nodules on the particles erosion of spheroidal graphite cast irons". Wear. 2004, vol. 257, p. 1125-1132.
- [14] Hatate M, Shiota T, TakahashiA N, Shimizu K. "Influences of graphite shapes on wear characteristics of austempered cast iron". Wear. 2001, vol. 251, p. 885-889