

escubierta en septiembre de 1997, situada a 135 km de la costa angoleña en aguas con una profundidad de 1.200 –1.500 m y con el propósito de comenzar la producción durante el segundo semestre de 2006, *Dalia* se presenta como el campo de producción de petróleo probablemente mayor de Angola en el mar.

TOTAL se propone superar los límites en la extracción de petróleo en

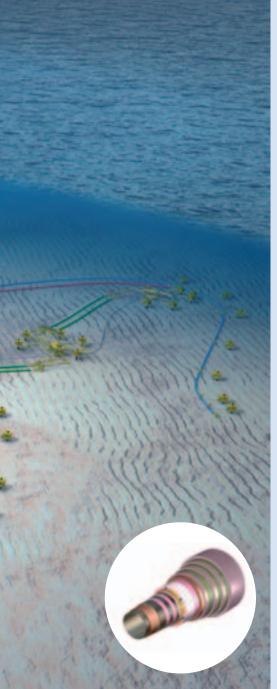

TOTAL refuerza su reputación como pionero de producción de petróleo en aguas profundas con *Dalia*, una de las más importantes instalaciones del mundo en alta mar.

Fig. 1. Instalación de las superestructuras

aguas profundas utilizando una tecnología innovadora para realizar el Proyecto *Dalia* de pozos múltiples respetando las reglas de salud, seguridad y Medio Ambiente de la Compañía y la Declaración de Desarrollo Sostenible.

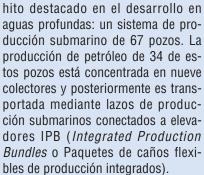
Con sus asociados del **Block 17** y **Sonangol**, TOTAL ha presentado un

da que la une con la superficie. Completan el sistema nueve cordones umbilicales, que controlan las entradas de los pozos (los Christmas trees) y los colectores mediante accionamientos hidráulicos y eléctricos.

Este sistema submarino está conectado a un buque FPSO (Floating Production, Storage and Offloading) de 300 metros de longitud y 60 de anchura para la producción, el almacenaje y la descarga, Su capacidad de almacenamiento es de dos millones de barriles de petróleo y sus instalaciones en la cubierta superior son las necesarias para el tratamiento del petróleo para su expedición, del agua producida, que es reinyectada en el depósito (roca porosa que contiene los hidrocarburos) y del gas, que puede ser invectado de nuevo o utilizado como combustible. El excedente será enviado en el futuro a una instalación de Gas Natural Licuado situada en Angola. Como no hay una conducción fija hasta la costa, el petróleo será expedido desde una boya fondeada a unos dos kilómetros del buque

Concesionario del Block 17:

Sonangol


Socios partícipes (%):

TOTAL (OPERADOR)	40
ESS0	20
BP	16,67
STATOIL	13,33
Norsk Hydro	10

Dalia en Angola

Dalia refuerza la ya importante actividad de TOTAL en Angola potenciando su participación histórica en este país al aportar una nueva referencia mundial de producción de petróleo en aguas profundas. Como operador de este proyecto (que significa una inversión superior a los 3.500 millones de dólares), TOTAL confirma su posición al frente del desarrollo energético angoleño donde viene actuando desde hace más de 50 años.

Este desarrollo marca la colaboración mantenida y creciente entre TO-TAL y Sonangol en la que la partici-

También hay cuatro líneas aisladas de inyección de agua que sirven a 30 pozos invectores y otras dos líneas de invección de gas que alimentan

Fig. 3. Taller del DSME, Corea del Sur

Fig. 4. Shallow Water Tests. Ensayos en aguas superficiales de los equipos submarinos en Tarragona

pación técnica de ésta última contribuye activamente al desarrollo del tejido industrial angoleño. Muestra de esta colaboración es la transferencia de tecnología mediante la Formación de jóvenes ingenieros y técnicos angoleños para las futuras etapas del funcionamiento de *Dalia*.

El proyecto *Dalia* establece también un ejemplo de respeto al Medio Ambiente evitando la quema de gas en condiciones normales de funcionamiento y reinyectando en el depósito el agua producida. Tales medidas confirman el compromiso de **TOTAL** para la reducción de emisiones.

Retos del proyecto Geociencias

Los cuatro depósitos de Dalia se formaron hace más de 25 millones de años en los lechos fósiles del río Congo por la acumulación vertical de una sucesión de situaciones catastróficas instantáneas a lo largo de acusados periodos de tiempo. Las masas de arena acumulada en esta zona fueron impregnadas por petróleo y gas natural generados por la maduración de materia orgánica. Las arenas de los depósitos, complejas, mal consolidadas y muy heterogéneas, tienen varios kilómetros de longitud y varias decenas de metros de espesor, y contienen petróleo ácido viscoso a una temperatura de 45 °C. Entre el depósito y el lecho marino yacen aproximadamente 800 metros de roca de recubrimiento.

Fig. 5. Imagen de **Aker Kvaerner Subsea**

Perforación


La campaña planeada para la perforación durará unos siete años y, una vez concluida, se habrán perforado 67 pozos muy dispersos con una longitud media de drenaje de 1.100 metros. Dos equipos de perforación, el *Pride Africa* y el *Pride Angola*, fueron construidos especialmente para la exploración y el desarrollo de la parcela 17 (Block 17) y estarán en el corazón de la campaña.

Colectores y *Christmas trees*

El equipo submarino incluye a los Christmas trees (Árboles de Navidad por la apariencia de amontonamiento de válvulas y llaves de paso en la tapa del pozo) y a los colectores que permiten la extracción del petróleo y la inyección de agua y gas en los depósitos

La producción de petróleo de los pozos se junta en nueve colectores. cada uno capaz de conectar hasta seis pozos. El petróleo mezclado es transportado luego por medio del sistema de transporte submarino hasta el buque FPSO. Las entradas de los pozos de inyección de agua y de gas están conectadas independientes a sus respectivas tuberías. Se han diseñado 67 Christmas trees de configuración horizontal con la particularidad de que permiten, una vez instalados, la perforación y la instalación en el pozo de tuberías de hasta 7". Los Christmas trees permiten controlar el fluido producido y la invección de agua y de gas.

Los equipos submarinos han sido sometidos a un proceso de calificación riguroso realizado en parte en Tarragona, España, con los *Shallow Water Tests* (Ensayos en aguas superficiales). Los objetivos de estos ensayos eran probar individualmente el funcionamiento de cada elemento, de interconectarlos y de probar luego el funcionamiento de cada elemento como un sistema integrado. Se ejecutaron con éxito total 70 tareas cada una de ellas con su propio procedimiento.

Tanto los Christmas trees como los colectores están controlados a distancia desde el FPSO mediante dispositivos hidráulicos y electrónicos sofisticados, conectados a través de los denominados cordones umbilicales. Debido a la baja temperatura del depósito de Dalia, es necesario asegurar el aislamiento térmico de todos los equipos con el fin de mantener la temperatura del petróleo por encima del punto de formación de hidratos.

Control del flujo

El garantizar el flujo de los fluidos del depósito hasta las instalaciones de superficie, bajo condiciones tan severas como las presentes en Dalia, es

ción de la producción (por inyección de gas).

Elevadores flexibles

Los elevadores IPB (Integrated Production Bundles) son conducciones flexibles que establecen la conexión entre el fondo del mar y la superficie. Se eligió la configuración en paquetes integrados: es decir que, entorno a la cañería flexible principal de producción de 12", se encuentran formando un paquete integrado 24 tuberías flexibles de activación de la producción y seis cables de calentamiento. Las primeras permiten transportar gas e introducirlo al pie de los elevadores aliviando y ayudando en la elevación del crudo viscoso a la superficie. Los

Fig. 6. Colectores y sus estructuras de Base-Taller de Sonamet, Angola

un reto considerable. La composición de los fluidos exige la elección de tuberías de 12" de diámetro para optimizar la producción y, al mismo tiempo, controlar los flujos multifásicos.

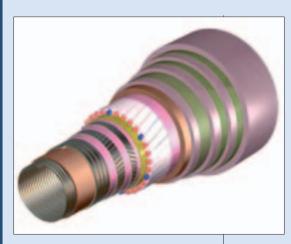
La prevención de la formación de hidratos requiere que todas las tuberías de producción estén aisladas, garantizando que el petróleo, extraído del depósito a baja temperatura, lleque a los sistemas de proceso del FP-SO a unos 34 °C. Esto se consigue con la tecnología de tubos coaxiales, en la que el espacio entre el tubo interior de producción y el tubo exterior portador está rellenado con aislamiento.

Los ocho elevadores IPB, que Ilevan el fluido al FPSO, son flexibles y llevan varias capas de aislamiento iunto con un sistema de calentamiento eléctrico y tuberías para la activasegundos, por dispersión de calor, limitan el enfriamiento de los fluidos en el caso de una parada. El conjunto está arrollado con 10 capas de aislamiento para asegurar la conservación del calor en el fluido. El empleo de esta tecnología, en la que cada paquete IPB tiene 1.650 metros de longitud y pesa 800 toneladas, es una verdadera primicia industrial.

Los IPB fueron sometidos a un programa intensivo de calificación a lo largo de siete meses de ensayos de calificación de los materiales, seguidos de la fase de ensayos mecánicos que comprendía el ensayo de aplastamiento (Crushing test), el ensayo de doblado-estirado (Bending-pulling test) y el ensayo de prestaciones en inmersión en aguas profundas (Deep-Water Immersion Performance) para validar la integridad del diseño en condiciones de aguas profundas.

También se realizaron ensayos térmicos verticales a escala real para confirmar las características térmicas y las prestaciones a lo largo de un periodo de tres meses, midiendo el coeficiente de intercambio de calor, el rendimiento del calentamiento y los tiempos de enfriamiento.

En Dalia se utilizan también cantidad de otras tuberías flexibles como los elevadores flexibles que se emplean para conectar las redes de inyección submarina de agua y de gas al FPSO o la conexión entre el FPSO y la boya de descarga.


FPS₀

El FPSO consta de un casco para el almacenamiento de dos millones de barriles de petróleo procesado y de cubiertas superiores equipadas con todas las instalaciones habituales en una plataforma fija, que garantizan el tratamiento apropiado del petróleo, del agua y del gas.

Las zonas habitables pueden acomodar hasta 190 personas. Diseñadas en siete niveles, están situadas por encima de los cinco niveles en el casco, donde se sitúan los equipos eléctricos, hidráulicos, un espacio para oficinas y el sistema de calefacción, ventilación y aire acondicionado.

Además de ser zonas diseñadas para su habitabilidad, están preparadas como refugio de máxima seguridad, a prueba de gas, capaces de resistir el fuego o incluso explosiones. En caso de evacuación, el personal puede utilizar uno de los cuatro botes salvavidas totalmente cerrados y movidos por motor (Totally Enclosed Motor Propelled Survival Craft), que caen libres desde una altura de 30 metros con una inclinación tal que les permite llegar al agua con seguridad y alejándoles del casco.

La sala de mandos está también situada en la zona habitable. Está dirigida normalmente por sólo cuatro personas y controla todo desde las funciones de servicio del buque hasta los sistemas de procesamiento de la producción. El sistema de control de producción submarino está entre los más grandes nunca instalados y go-

bierna más de 17.000 puntos de control subacuáticos. El helipuerto y la torre de telecomunicaciones están ubicados sobre la cubierta superior.

La expedición del petróleo se realiza desde una boya de descarga, donde se espera que atraquen los petroleros a un ritmo medio de un barco cada cinco días durante los primeros años de producción.

El FPSO se ha construido en Corea del Sur y será eventualmente remolcado a Angola en un viaje de más de 20.000 kilómetros con una duración prevista de unos tres meses.

Un proyecto global

En el Proyecto *Dalia* están implicadas muchas empresas radicadas en cuatro Continentes: África, Europa, Asia y América, y cuando esté terminado (incluyendo diseño, fabricación e instalación), se habrán invertido 15

Fig. 7. Imagen de **Technip IPD**-Paquetes
de caños flexibles de
producción integrados

millones de horas de trabajo.

El grupo de proyecto insiste en que la Seguridad es una prioridad absoluta. Obrar para una mejora constante de la Salud, la Seguridad y el medio ambiente es el ob-

jetivo principal de la dirección del proyecto, siendo la evaluación continua y los esquemas de incentivos algunas de las herramientas utilizadas para cumplir los requisitos más rigurosos.

Integración de proyecto y país

TOTAL tiene una fuerte presencia en Angola y su objetivo es continuar ayudando al desarrollo de industrias locales y a la transferencia de conocimientos, entrenando a jóvenes angoleños para permitirles utilizar sus conocimientos en los Centros situados en todo el país y que asistirán al Proyecto *Dalia*.

La adjudicación de contratos localmente ha permitido el desarrollo de varias actividades industriales nuevas en Angola, que están contribuyendo en varias etapas de la fabricación de los sistemas de producción submarina y de sus aparatos de control:

- Ampliación de la base Sonils en Luanda para el desembalaje del equipo submarino, su ensayo, su conservación y su almacenamiento.
- Creación de una base *Spool* en Dande, que permite la fabricación de tubería enrollada, incluyendo las líneas de producción coaxiales.
- Instalación de la planta de fabricación de cordón umbilical Angoflex en Lobito, en la que son fabricados los umbilicales para inyección estática y dinámica de agua, y donde están integradas las unidades submarinas de distribución y los cabezales de terminación de los umbilicales.

Además, se han reforzado las actividades industriales en un cierto número de Centros de fabricación angoleños, tales como **Sonamet** en Lobito, donde se han construido el casco y los pilares de ancladero de la boya de descarga así como los pilares de amarre del FPSO. **Sonamet** es también la base para el montaje final de los colectores junto con la fabricación de sus estructuras de base y de la fabricación de las estructuras que guían la instalación de los *Christmas trees*.

Esta transferencia de actividad industrial está acompañada por un extensivo programa de entrenamiento para ingenieros y técnicos angoleños. Unas 50 personas han adquirido ya experiencia práctica en los muchos lugares operados por los principales contratistas de *Dalia* y unos 30 angoleños han sido entrenados en Francia, en el Centro de aprendizaje de **TOTAL** preparándose para sus futuras responsabilidades en el buque FPSO.

Dalia está contribuyendo también al bienestar del pueblo angoleño mediante la reconstrucción de puentes que ayudarán a establecer comunicaciones más fluidas dentro del país y una esperanzadora mejora de la vida diaria de un gran número de angoleños

Datos y cifras Torres de perforación

- Dos mil quinientos días de perforación para los 67 pozos.

Fig. 8. Fabricación del cordón umbilical en la planta de **Angloflex**, Lobito, Angola

- Dos equipos de perforación trabajando en paralelo en el primer periodo de la campaña.

Umbilicales y Líneas de flujo

- Ocho elevadores IPB flexibles.
- Cuarenta kilómetros de cuatro lazos de tubo coaxial de 12".
- Treinta y cinco kilómetros de cuatro líneas de inyección de agua de 12".
- Diez kilómetros de dos líneas de inyección de gas de 12".
- Setenta y cinco kilómetros de umbilicales.

Sistema de producción submarino

- Sesenta y siete pozos equipados con Christmas trees horizontales, de los cuales:
- Treinta y cuatro son para producción de petróleo.
 - Treinta para invección de agua.
- Tres para la invección de gas (dos de ellos serán convertidos más tarde en invectores de agua).
 - Nueve colectores de producción.

Pozos

- Tuberías de producción de 5^{1/2}" v 7" de diámetro.
 - Arquitecturas ligeras y reforzadas.
- Drenajes de unos 1.000 metros de longitud media.
- Siete pozos equipados con controles denominados inteligentes.

FPS0

Dimensiones del casco: 300 metros de longitud, 70 de anchura y 32

Capacidad de almacenamiento de petróleo: Dos millones de barriles.

Fig. 9. Equipo de perforación, Pride Angola

Capacidad de procesamiento: 240.000 barriles diarios.

Capacidad de invección de agua: 405.000 barriles diarios.

Capacidad de compresión del gas: Ocho millones de metros cúbicos diarios.

Potencia total instalada: 66 MW. Peso de la parte superior: 30.000 toneladas.

Personal a bordo: 120 personas y hasta 190 en épocas de arranque y

Duración de vida programada: 20 años.

Bova de descarga

Sistema de carga por torreta. Fondeada a dos kilómetros del buque FPSO.

Fechas clave

Septiembre de 1997: Descubrimiento del campo Dalia.

Abril de 2003: Arranque del desarrollo del proyecto.

Enero de 2004: Comienzo de la construcción del casco del FPSO.

Junio de 2004: Comienzo de la fabricación de las superestructuras del FPSO.

Agosto de 2004: Botadura del casco.

Febrero de 2005: Comienzo de la campaña de perforación.

Febrero de 2005: Envío a Angola de los primeros Christmas trees.

Abril de 2003: Llegada del casco del FPSO al taller donde se fabrican las superestructuras.

Mayo de 2005: Incorporación de las superestructuras al FPSO.

Diciembre de 2005: Primer elevador IPB cargado en el buque.

Primer trimestre de 2006: Comienzo de la campaña de instalación en el mar.

Primer trimestre de 2006: Partida del FPSO hacia Angola.

Segundo semestre de 2006: Primera extracción de petróleo.

QUIÉN ES QUIEN EN TOTAL *DALIA*

Daniel Picard Project Manager

Anne Courbot Field Operations Manager

Michel Gloaguen UFL Manager

Genevieve Mouillerat FPSO Manager

Jacques Thebault Marc Perrot Deputy Project Manager

SPS Manager