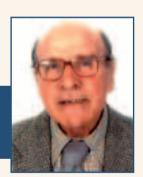


RESUMEN

El 9 de octubre pasado fue concedido el Premio Nóbel de Física 2007 a Albert Fert y a Peter Grünberg por su descubrimiento de la resistencia magnética gigante. Este hecho ha permitido fabricar cabezas lectoras de disco, que funcionan a una velocidad increíble y detectan campos magnéticos muy débiles.

La resistencia eléctrica está causada por los fonones, un modo cuantizado de vibración.

La resistencia magnética es el cambio de resistencia de un conductor, cuando es sometido a un campo magnético externo, que es paralelo o no respecto de la corriente eléctrica.


La cabeza lectora es un sensor multicapa de metales alternados: ferromagnéticos y paramagnéticos.

La capa aislante, con espesor de nanómetros, separa las capas ferromagnéticas.

La espintrónica usa simultáneamente tanto la carga del electrón, como su espín.

Palabras clave: Fonón. Resistencia magnética gigante. Multicapas. Espintrónica.

Pascual Bolufer Mayans Físico Instituto Químico de Sarriá

22/10/07

14/01/08

Recibido:

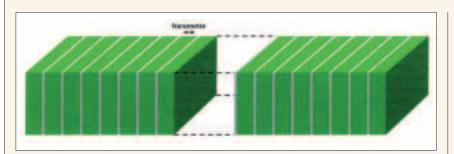
Aceptado:

ABSTRACT

The 9th past october won the Nobel Prize for Physics 2007 Albert Fert and Peter Grünberg for their discovery of Gigant Magnetic Resistance, a key component of the computer's reading head, running at a high speed. detecting very weak magnetic fields.

The electric resistance is caused by the phonons, a quantic vibration.

The magnetic resistance is measured as a change of conductor's resistance, when a magnetic field is parallel, or not parallel to the electric current.


The reading head is a multisheet of alternated metals:ferromagnetic and paramagnetic.

The non magnetic isolant sheet, a few nanometers wide, is in the middle of ferromagnetic sheets.

The GMR Spintronics measure the electric charge of the electron, and its spin.

Key words: Phonon. Giant magnetic resistance. Multisheets. Spintro-

El Premio **Nobel** de Física 2007 fue concedido el 9 de octubre a Al-

La cabeza lectora es un multihojas, un apilamiento de capas alternadas de material magnético y no magnético, de espesor nanométrico. El verde representa el ferromagnético. Los electrones atraviesan las capas de izquierda a derecha.

El contador de electrones no está representado a la derecha.

bert Fert y Peter Grünberg por su descubrimiento de la Cabeza lectora de datos GMR.

Cuando pedimos al ordenador cualquier información, por ejemplo una foto, no nos damos cuenta de que la cabeza lectora empieza a volar a una velocidad increíble sobre la superficie del disco duro buscando los diminutos campos magnéticos, generados por los bits de la información. La cabeza lectora detecta los campos magnéticos mediante un efecto físico, la magneto resistencia gigante (GMR) descubierta en 1988 por Albert Fert, francés de Carcasonne y Peter Grünberg, alemán, de Forschungszentrum Jülich.

Probablemente la cabeza lectora GMR sea el producto de nanociencia más importante hoy en día.

LA RESISTENCIA ELÉCTRICA

Una corriente de electrones a través de un metal experimenta una resistencia. Exceptuamos a los superconductores, en los cuales, por debajo de cierta temperatura, la corriente fluye sin resistencia. La resistencia está causada por los fonones.

Un fonón es un modo cuantizado de vibración, que tiene lugar en redes cristalinas, como la red atómica de un sólido. Los fonones juegan un papel muy importante en la conductividad térmica y eléctrica. Los fonones son bosones que tienen espín cero.

En un cristal los átomos siempre vibran alrededor de sus posiciones de

equilibrio, y se desvían por tanto de las posiciones de una matriz perfecta. Los electrones de conducción pueden ser dispersados por estas desviaciones, debido a impurezas y defectos cristalinos.

Los únicos electrones que participan en la conducción eléctrica son los del nivel de Fermi, o muy cercanos a él, los cuales experimentan una fuerte dispersión, que produce la resistencia.

Fert estudió la conductividad de metales ferromagnéticos entre 1960 y 1970, y llegó a la conclusión, en el caso del hierro, de que hay dos tipos de portadores, los del spin up y del spin down, los cuales muestran diferencias importantes en resistencia.

LA RESISTENCIA MAGNÉTICA

Consiste en el cambio de resistencia de un conductor, cuando es sometido a un campo magnético ex-

Una corriente de electrones a través de un metal experimenta una resistencia

nes de los átomos, es la interacción electrón-fonón. Otras causas de resistencia es la dispersión de electro-

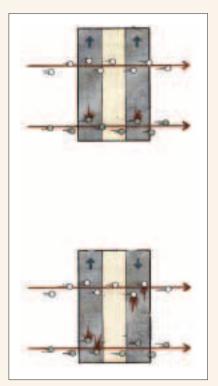



Gráfico de Grünberg. La abscisa es el campo magnético en kilo Gauss. En el centro el campo es cero. La ordenada muestra la resistencia eléctrica en porcentaje. Sin campo magnético externo la resistencia es alta.

Con campo magnético, no importa la orientación, la resistencia es baja. terno. En los elementos ferromagnéticos, como el Fe, Co y Ni, esta propiedad también depende del ángulo formado por el campo magnético y la corriente eléctrica.

Ya en 1857, exactamente hace 150 años, W. Thomson (Lord Kelvin) midió el comportamiento de la resistencia del hierro y del níquel en presencia del campo magnético, v escribió: "He encontrado que el hierro. cuando está sometido a una fuerza magnética, incrementa la resistencia al paso de la corriente eléctrica, en la dirección del campo magnético, v una disminución de la resistencia, cuando la corriente eléctrica y el campo magnético forman un ángulo de 90º'.

A esta diferencia de resistencia en la configuración paralela y perpendicular llamamos "Resistencia magnética anisotrópica"

Arriba. Las 2 capas ferromagnéticas tienen el mismo alineamiento magnético. Los electrones con spin down atraviesan las capas sin apenas resistencia. No hav dispersión de electrones. Los electrones con spin up son dispersados parcialmente. Resistencia baja. Abajo. Las 2 capas ferromagnéticas con alineación antiparalela. Los electrones, no importa con qué spin up o down, son parcialmente dispersados. Resistencia alta.

La cabeza lectora es un sensor multicapa de diversos metales alternados (ferromagnéticos y paramagnéticos) que detectan muy pequeños cambios en magnetismo. En octubre pasado Hitachi indicó que podrá construir una cabeza lectora de 30 x 50 nanómetros, 2000 veces más pequeña que el espesor de un cabello humano.

CAPAS DE ESPESOR DE **NANOMETOS**

A partir de 1970 el desarrollo de la física de materiales permitió la manufactura de materiales completamente nuevos. El uso del crecimiento

epitaxial permitió construir capas del espesor de un solo átomo, y superponer dichas capas. Así llegamos a 1970 en que se produce una matriz metálica de espesor nanométrico. Primero solo con metales no magnéticos y luego con los magnéticos.

Al juntar dos metales en una misma capa hay que procurar que tengan la misma estructura cristalina y espaciamientos internos de matriz, por eiemplo el hierro y el cromo.

El efecto túnel de resistencia magnética, abreviado en inglés: TMR, ocurre cuando dos capas ferromagnéticas está separadas por una capa sumamente delgada (un nanómetro), que es aislante. La corriente eléctrica túnel es función de la orientación relativa de las dos capas magnéticas. La resistencia es más alta en el ordenamiento antiparalelo.

Este efecto túnel ya fue descubierto en 1975 por M. Jullière a muy baja temperatura. El usó Fe como ferromagnético y Ge como aislante.

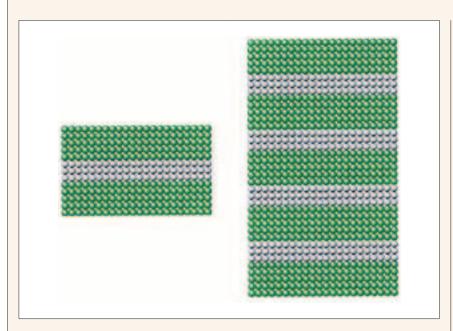
En la década de los 80 había escepticismo en meiorar el rendimiento de la cabeza lectora, por ello fue una sorpresa el hallazgo de Fert y Grünberg, y dio un fuerte impulso para investigar el efecto túnel de resistencia magnética. La capa central no magnética hay que construirla lo más delgada posible.

LA MAGNETO RESISTENCIA GIGANTE

Si formamos una especie de sándwich con dos capas ferromagnéticas separadas por un capa paramagnética, sin campo magnético, observamos que las capas magnéticas tienen direcciones opuestas de imanación. La magnetización antiparalela ya es una sorpresa.

Al atravesar las 3 capas con una corriente eléctrica, medimos una resistencia eléctrica alta. Luego añadimos un campo magnético elevado. Observamos que las dos capas ferromagnéticas tienen una magnetización paralela.

Al crear una corriente eléctrica entre las 3 capas, medimos una corriente intensa, es decir, la resistencia eléctrica ahora es baja. Hemos descubierto la GMR, la resistencia magnética gigante.


La causa física se debe a que unos electrones son de spin up y otros de spin down, que crean resistencia de modo muy diferente.

Si escogemos como material ferromagnético el óxido de cromo, la corriente eléctrica está formada solo por electrones de spin down (Hwang y Cheong, 1997).

FERT Y GRÜNBERG INTERVIENEN

Como en otros descubrimientos, el de la GMR ha sido posible gracias a una serie de avances previos: la fabricación de estructuras artificiales compuestas por capas alternadas de materiales ferromagnéticos y paramagnéticos, formando una especie de sándwich, un milhojas, o multicapa metálica, formado por capas de

La cabeza lectora es un sensor multicapa de diversos metales alternados (ferromagnéticos y paramagnéticos) que detectan muy pequeños cambios en magnetismo

El multihojas del gráfico 1 se representa aquí mostrando los átomos, en forma de esferas.

unos pocos átomos de espesor. Es fruto de la naciente nanociencia.

Los materiales magnéticos, cuando forman un imán, alinean su imanación en el mismo sentido. Fue algo inesperado descubrir en los años 80 que si separamos dos capas magnéticas por una no magnética, interpuesta en medio, la 2ª capa queda imantada en sentido contrario, un efecto que en lenguaje técnico se llama acoplamiento anti-ferromagnético, u ordenamiento antiparalelo.

En 1988 Grünberg y Fert prepararon unas multicapas magnéticas/no magnéticas (Fe/Cr/Fe) con un espesor de cromo que producía un ordenamiento antiparalelo de las capas de hierro. El espesor de las capas era de unos nanómetros, el espesor de unas pocas capas atómicas.

Al medir la resistencia eléctrica de estas multicapas, en ausencia de campo magnético, encontraron un valor alto, pero en presencia de un campo magnético externo. la resistencia de la multicapa disminuyó.

Esto indica que la presencia de un campo magnético orienta las capas magnéticas del hierro en la dirección del campo externo, y la resistencia eléctrica disminuye. Grünberg y Fert habían descubierto la magneto resistencia gigante (GMR).

Recordemos que los electrones son partículas con espín semientero, que verifican el principio de exclusión de Pauli, que dicta que dos fermiones no pueden ocupar simultáneamente el mismo estado cuántico. No obstante, debido a una degeneración de estado, éste puede aceptar un

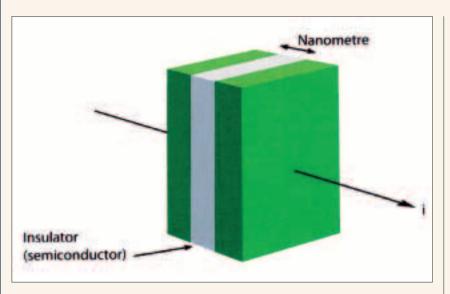
electrón sin tener en cuenta su espín (spin up – spin down).

En un átomo no excitado todos los niveles bajos de energía están ocupados por los electrones, y el nivel de energía más alto ocupado se llama el nivel de Fermi.

Grünbera v Fert no solo descubrieron los cambios de resistencia magnética, sino que se dieron cuenta de que se encontraban ante un fenómeno nuevo, y de momento, desconocido.

En 1995 J. S. Moodera, animado por el descubrimiento de la GMR. logró este efecto túnel a temperatura ambiente, e hizo posible la MRAM, la memoria magnética de acceso aleatorio. la memoria no volátil.

El paso siguiente fue desarrollar la GMR como cabeza lectora de discos, el producto comercial.


Fue Stuart Parkin, un físico inglés de IBM quien cambió los metales de la multicapa, y adoptó cobalto/cobre/permallo y (Fe20Ni80) más otros perfeccionamientos, hasta lograr con tesón la cabeza lectora ideal.

Un efecto físico que antes era observable a bajas temperaturas y altos campos magnéticos (medidos en Teslas) Parkin lo convirtió en una lectora que funcionaba a temperatura ambiente y con un campo magnético de pocos Gauss. IBM lanzó al mercado esa cabeza lectora GMR en 1997.

El resultado ha sido un fuerte aumento de la capacidad de almacenamiento de información en los ordenadores y otros dispositivos, como MP3, iPod. P2P, etc.

El 15 de noviembre 2007 Hitachi anunció que en 2011 cuadruplicará la densidad de almacenamiento hasta 4

La espintrónica es un neologismo a partir de espín y electrónica, conocido también como magneto-electrónica, que podemos considerar con razón como hija de la magneto resistencia gigante

La resistencia magnética de efecto túnel perfecciona la GMR, y aumenta sus aplicaciones.

terabytes para ordenadores de sobremesa, y 1 terabyte para los portátiles. El anuncio ocurrió durante la Conferencia en Tokio para revisar la GMR, con ocasión de los Premios Nóbel de Física 2007 v avanzar en el registro magnético perpendicular, antiparalelo.

LA ESPINTRÓNICA

Es un neologismo a partir de espín y electrónica, conocido también como magneto-electrónica, que podemos considerar con razón como hija de la magneto resistencia gigante. Es una tecnología emergente que usa simultáneamente tanto la carga del electrón, como su espín.

El espín del electrón es una propiedad cuántica, que se manifiesta como una energía magnética débil, que puede tomar solo dos valores: +h/2. o bien -h/2. En donde h es la constante reducida de Planck. En in-

glés a esas dos polaridades llaman: spin up y spin down.

En un metal paramagnético hay tantos electrones con spin up como con spin down, no hay una neta magnetización. La suma algebraica es cero. Todo lo contrario que en un metal ferromagnético.

Construir un sistema de espintrónica significa tener un sistema que genere una corriente de electrones con el espín polarizado (con espín del mismo valor) y un detector que registre esa polarización.

La ventaja del nuevo sistema es duplicar el ancho de banda del cable, pues por él circularán dos clases de electrones de espín polarizado.

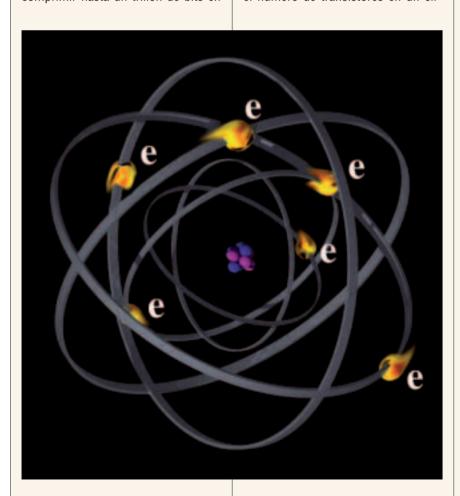
El método más simple de que una corriente sea espín polarizada es hacerla pasar a través de un material ferromagnético, que debe ser un cristal único, de tal forma que filtre los electrones de manera uniforme.

LA VÁLVULA ESPIN

Lo mejor de la GMR y de la espintrónica es la válvula espín, un dispositivo con una estructura de dos finas capas de materiales magnéticos, separados por una capa aislante, muy delgada, paramagnética, muy sensible al campo magnético externo, que solo deja pasar a los electrones con un espín determinado. En la válvula espín la resistencia eléctrica varía en función de la dirección del campo magnético aplicado.

El uso convencional del estado de un electrón en un semiconductor es la representación binaria, pero los bits cuánticos de la espintrónica, los qubits, explotan los estados del espín como superposiciones de 0 y 1. Esto puede dar lugar a una nueva generación de ordenadores.

Albert Fert


Peter Grünberg

Los materiales magnéticos, cuando forman un imán, alinean su imanación en el mismo sentido

La ventaja del nuevo sistema es duplicar el ancho de banda del cable, pues por él circularán dos clases de electrones de espín polarizado

Los dispositivos espintrónicos se usan en el almacenamiento masivo de datos. Ya en 2002 los científicos de IBM notificaron que ellos podían comprimir hasta un trillón de bits en

nencial. La densidad de información por área se duplica cada 12 meses. un periodo más corto que el previsto en la ley de Moore. El se refería a que el número de transistores en un cir-

una pulgada cuadrada, equivalente a 1. 5 Gbit/mm², o aproximadamente 1 TB en un disco de 3, 5" de diámetro.

Debido a la GMR, los discos usan el efecto espín del electrón, y la densidad de almacenamiento de los discos duros ha crecido de forma expocuito integrado se duplica cada 18

La GMR de Fert y Grünberg muestra que la investigación básica en Física produce desarrollos importantes de la tecnología, y particularmente de la Informática.

BIBLIOGRAFÍA

- The discovery of giant magnetoresistance. Kungl. Vetenskapsakademien. Stockholm 2007.
- Awsschalom, D. The diamond age of spintronics. Scientific American Oct. 2007.
- Fert. A. and Campbell, I. A. Two current conduction in nickel. Phys. Rev. Lett. 21, 1190 (1968).
- Grünberg, P. Lavered magnetic structures. Phys. Rev. Lett. 57, 2442(1986).
- Parkin, S. S. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures. Phy. Rev. Lett. 64, 2304(1990).
- Rydning, A. 4 Terabytes by 2011. Technology Review. MIT. Oct. 2007.
- Thomson, W. On the electro-dynamic qualities of metals. Proc. of the Royal Soc. of London, 8. pp. 546-550(1856-1857).
- ITURBE URIARTE, Rafael et al. "El anillo LHC del CERN (parte 1)". DYNA Septiembe 2005. Vol 80. p. 22-
- MENDIVIL ARRIETA, Carmelo et al. "El anilllo LHC del CERN (parte 2)". DYNA Marzo 2007. Vol. 82. p. 6-