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Image denoising via exact minimum 
rank approximation with relative total 
variation regularization
Eliminación del ruido de imagen a través de la aproximación exacta del rango 
mínimo con regularización de la variación total relativa

ABSTRACT
Image denoising is one of the classical problems in image 

processing. Such denoising by minimum rank approximation via 
Schatten p-norm minimization is prone to cause over-smoothing. 
Intricate and irregular image structures cann’t be distinguished 
dramatically by Schatten p-norm minimization. A flexible and 
precise model named weighted Schatten p-norm minimization 
(WSPM) with relative total variation regularization (RTV-WSPM) 
was proposed in this study to address this issue. The proposed 
RTV-WSPM not only had an accurate approximation with a Schat-
ten p-norm but also considered the prior knowledge where differ-
ent rank components have different importance by relative total 
variation. Moreover, the alternating direction method of multi-
pliers was introduced to solve the proposed RTV-WSPM model. 

Experiments on Gaussian white noise and salt-and-pepper noise 
demonstrate that the proposed technique outperforms other 
state-of-the-art methods, especially under degradation for high-
density image noise. In terms of peak signal-to-noise ratio evalu-
ationthe proposed RTV-WSPM achieves significant improvements 
over the conventional WSPM under salt-and-pepper noise. There-
fore, the RTV-WSPM exerts a good effect to restore the image 
structure and smoothness and improves denoising performances.

Keywords: Weighted Schatten p-norm minimization; image 
denoising; low rank matrix approximation; RTV norm.

1. INTRODUCTION 
Using images to acquire and transmit information is an im-

portant approach for humans. The important details of images 
and their quality are usually corrupted by noise when an im-
age is captured in the real world. Thus, recovering a clean image 
from its noisy version in such a way that the clean image retains 
fine structure and texture details is crucial. As image denoising 
is a pathological problem, its performance mainly relies on prior 
knowledge.

Image denoising has been extensively studied in the past de-
cades. Patch-based image denoising methods with nonlocal self-
similarity (NSS) prior, such as non-local means (NLM) [1] and block 
matching 3D (BM3D) [2], have attained competitive and state-of-
the-art image denoising results. These techniques achieve satis-
factory performances under a low noise level. However, their per-
formance in the recovery of fine details in mixed noise image is 
unsatisfactory.

Given that the matrix formed by the image blocks of natural 
images has a low-rank property, the structures hidden in the ma-
trix are restored by combining low-rank matrix approximations 
(LRMAs) and NSS. Thus, image denoising can be regarded as a 
typical LRMA problem. Recently, image denoising methods based 
on LRMAs had showed significant improvements for recovering 
severely corrupted images [3–6]. However, the rank minimization 
model problem, which entails nonconvexity, is a NP problem and 
is difficult to solve. The nuclear norm is the tightest convex relax-
ation for the rank minimization problem. In such a problem, the 
nuclear norm is used to replace the matrix rank, and this approach 
is widely used in the fields of computer vision and machine learn-
ing through solving the nuclear norm minimization.

Existing methods based on LRMAs, such as weighted nuclear 
norm minimization (WNNM) [3] and weighted Schatten p-norm 
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RESUMEN
•�La eliminación de ruido es uno de los problemas clásicos en el 

procesamiento de imágenes. Esta eliminación por aproximación 
del rango mínimo a través de la minimización del p de la norma 
Schatten es propensa a causar sobre-alisamiento y no distingue 
en absoluto las estructuras intrincadas e irregulares de las 
imágenes. En este estudio se propuso un modelo flexible y preciso 
llamado minimización ponderada del p de la norma Schatten 
(WSPM) con regularización de la variación total relativa (RTV-
WSPM) para abordar este tema. El RTV-WSPM propuesto no sólo 
tiene una aproximación precisa con una norma p de Schatten, 
sino que también considera el conocimiento previo en el que 
los diferentes componentes del rango tienen una importancia 
diferente según la variación total relativa. Además, se introduce 
el método de dirección alterna de los multiplicadores para 
resolver el modelo RTV-WSPM propuesto. Los experimentos con 
el ruido blanco gaussiano y el ruido “sal y pimienta” demuestran 
que la técnica propuesta supera a otros métodos de vanguardia, 
especialmente a la degradación por ruido de imagen de alta 
densidad. En términos de evaluación de la relación señal/ruido de 
pico, el RTV-WSPM propuesto logra aproximadamente mejoras de 
0,814 dB sobre el convencional WSPM bajo ruido “sal y pimienta”. 
Por lo tanto, el RTV-WSPM ejerce un buen efecto para restaurar 
la estructura y la suavidad de la imagen y mejora las prestaciones 
de eliminación de ruido.

• �Palabras clave: Minimización ponderada de la norma Schatten, 
eliminación de ruido en imagen, aproximación de la matriz de 
bajo rango, modelo RTV.
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minimization (WSPM) [4], mainly exploit the non-local self-simi-
larity of image structure and approximate the original rank mini-
mization by solving the nuclear norm minimization problem.

Although LRMAs maximize NSS on the patch level, they usu-
ally produce over-smooth estimates and fail to preserve signifi-
cant features, textures, and edges because structures with ir-
regular patterns become weak in NSS prior. For a textural image, 
textures with regular patterns can be well represented by a low 
rank model due to the numerous repeated structures involved. 
However, textures with irregular patterns may have insufficient 
repetitive structures such that they cannot be well represented by 
a patched-based low-rank model. Accordingly, LRMAs sometimes 
smoothen out fine details even with a low noise level.

This study inspired by the Schatten p-norm first focused on 
the WSPM-based model that integrates the relative total variation 
(RTV) norm constraint into the model to remove the noise from the 
observation data to address the over-smoothing problem caused 
by a low rank model. The alternating direction method of multipli-
ers (ADMM) algorithm was applied iteratively to remove Gaussian 
white and salt-and-pepper noises. The experiment results of the 
proposed method demonstrate its state-of-the-art performance 
in view of quantitative evaluation and subjective visual quality.

2. STATE OF THE ART
In recent years, techniques based on NSS and low-rank prior 

de-noising methods have been actively studied [1–6] and have 
achieved good performances under various noises. Luo et al. [1] 
utilized the L1 norm to estimate the L2 distance and lowered the 
computation complexity for NLM. Liu et al. [4] proposed a WSPM 
based on WNNM for image denoising and background subtraction 
and achieved good results. Dong et al. [6] suggested an image 
restoration method combining nuclear norm minimization (NNM) 
and the L2 and L1 norm sparse groups with bilateral variance 
estimation. The approach achieved a satisfactory effect, but the 
over-smoothing of the image structure persisted. Gu et al. [7] put 
forward a low-rank model with WNNM to approximate rank mini-
mization according to the reconstruction of the matrix formed by 
image blocks with high structural similarity. The technique had a 
good effect on Gaussian noise through the rank minimization of 
the image structure, but the effect was not ideal when the image 
structure was not rich.

Hosono et al. [8] proposed multi-channel tensor weighted nu-
clear norm minimization based on WNNM [7] for color real image 
denoising, in which the denoising performance was significantly 
improved by estimating the noise statistics of the three channels of 
a color image with channel redundancy and introducing a weight 
matrix to balance data fidelity between channels. Huang et al. [9] 
developed rank minimization as the regularizing term rather than 
the nuclear norm by the NSS scheme, solved the hard threshold-
ing operation of the singular values of observation matrices, and 
applied the technique to remove Gaussian white noise in images. 
The rank minimization algorithm [9] had a good denoising effect 
in the logarithmic domain. Signoretto et al. [10] used the tensor 
low-rank property with application to spectral data and compared 
the low-rank tensor and matrix on the basis of the tensor nuclear 
norm minimization to estimate the low-rank tensor, resulting in 
tensor nuclear norm minimization that performed effectively. Feng 
et al. [11] suggested a blind seismic signal denoising algorithm 
called W-WNNM and that is based on the WNNM model. The W-
WNNM estimated the noise level by principal component analysis 
and controlled the shrinkage of a singular value of the matrix by 

weights to remove the random noise of the seismic signal.
NNM is a convex substitute of the low rank of the matrix by 

estimating all non-zero singular values and is employed for many 
applications. In line with NNM, a truncated nuclear norm con-
straint named by TNNR was proposed by Hu et al. [13] and op-
timized the minimum sum of the singular value, which can be 
approximate to low-rank representation. However, the NNM and 
TNNR do not assign different weights to different singular values 
when the singular value threshold shrinks. In the decomposition 
principle of singular value decomposition (SVD), the higher the 
singular value, the richer the image information. Thus, some useful 
information is lost when the threshold shrinks. Mohan et al. [14] 
put forward an iterative reweighting algorithm to assign differ-
ent weights to different singular values, an approach that esti-
mated the low rank for preserving structure detail information, 
but encountered difficulty in adjusting parameters to obtain the 
optimal effect. Eriksson et al. [15] proposed the matrix comple-
tion model of missing data in which the L1 norm replaces the L0 
norm and which had a good effect on image denoising. Further-
more, Chatterjee et al. [16] developed a near-optimal patch-based 
method for image denoising, which had a significant performance 
on Gaussian noise but required extensive computation. All the 
aforementioned methods can be applied to image denoising and 
achieve outstanding performances. However, sometimes they still 
over-smooth image textures and edges, thereby degrading the im-
age visual quality. A flexible and precise model named weighted 
Schatten p-norm minimization with relative total variation regu-
larization (RTV-WSPM) is proposed in this study to address such 
a problem.

The rest of the study is organized as follows: Section 3 briefly 
introduces the WPNM model and RTV and the RTV-WSPM model 
and the corresponding efficient optimization algorithm developed 
by the ADMM; Section 4 presents the experimental results and 
discusses the differences between our proposed method and other 
techniques; and Section 5 concludes this paper.

3. METHODOLOGY

3.1. WPNM MODEL
Given the original image x from its noisy observation y and 

xi its pixel at location i, under the assumption that a simple ad-
ditive noise is zero-mean Gaussian with isotropic variance, the 
observed noisy image can be modeled as y = x + n, where n is 
additive Gaussian noise. LRMAs mainly include low-rank matrix 
factorization (LRMF) and the low-rank minimization method [6]. 
Given matrix Y, the goal of LRMF is to identify matrix X that is as 
close to Y as possible under certain data fidelity. Moreover, matrix 
X can be decomposed into the product of two low-rank matrices. 
LRMF is a non-convex optimization problem, making it difficult 
to solve. Conversely, low-rank minimization is a non-convex opti-
mization problem, and LRMAs are realized by replacing low-rank 
minimization with NNM, which is a convex optimization problem 
that is easily resolved.

To make the problem practicable, the LRMA problem can be 
approximately solved by a convex relaxation of optimizing the 
NNM problem [5] as follows:

(1)

where  is the observation data,  is a posi-
tive constant for balancing between the low-rank regulariza-
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tion and fidelity terms,  denotes a low-rank matrix, 
 and  is the nucle-

ar norm regularization term, defined as the sum of its singular 
values, and  is the ith singular value of .

Cai et al. [12] proved that LRMAs based on NNM can be solved 
easily by the soft threshold operation of a singular value of the 
observation matrix. Its optimum solution can be effectively solved 
by the singular value thresholding operation as follows:

(2)

where is the SVD,  
,  and  is the gen-

eralized soft thresholding operator with weight vector as 
 for each diagonal element .

NNM suffers from the over shrinking problem when it shrinks 
different components equally with the same value, and such com-
ponents have clear physical meanings and should be treated dif-
ferently. The capability and flexibility of NNM are greatly restricted 
in practice. To overcome the shortcomings of NNM and well ap-
proximate the rank function, Gu et al. [5] presented a reasonable 
NNM called the WNNM, which is defined as follows:

(3)

where  denotes the weight of the ith singular 
value .

The WSPM based on WNNM proposed by Xie et al. [4] is a 
feasible scheme. The flexibility of the model is greatly improved 
in many applications by simulating the rank function by shrinking 
each singular value depending on its magnitude and combining a 
weak restriction supported by setting the power. The Schatten p-
norm of the WSNM problem can be formulated as follows:

(4)

where the regularization term is defined as 
 with power .

The optimum solution of WSNM can be achieved by trans-
forming Eq. (4) into a series of independent nonconvex lp-norm 
subproblems that can be iteratively solved by the generalized soft 
threshold algorithm.

3.2. RELATIVE TOTAL VARIATION REGULARIZATION
Although total variation (TV) regularization is a highly effec-

tive way of smoothing noise and preserving edges, it tends to pro-
duce a serious staircase effect in the denoised images. To address 
the problem, Beck et al. [20] proposed a relative total variation 
regularization model that is simple but effective based on novel 
local variation measures. Relative Total Variation (RTV) regulariza-
tion has the advantage of extracting image edge texture and other 
details under the complication of texture patterns, which could 
be regular, near-regular, or irregular, and is helpful for preserving 
the important structures of image denoising. RTV [21], a variant of 
TV, was employed to extract edge structure and texture for image 
structure extraction and achieved good results.

RTV regularization is a general pixel-wise windowed total vari-
ation measure in some window R and is written as follows:

(5)

where q belongs to R(p), the rectangular region centered at 
pixel p, and  is a weight. ε is a small positive number to 
avoid division by zero, are the partial derivatives in horizontal 
and vertical directions  and  is a weighting func-
tion and defined by ,where  is standard de-
viation.

In contrast to the traditional TV regularization with gradient 
information, Eq. (5) has a stronger noise immune capability by 
using image structure on a patch rather than a pixel level. Lg  
can indicate regional structure. The corresponding weight must 
be reduced to retain the structure. In the case of a flat region, 
the smaller the Lg value, the bigger the weight. According to the 
description of the matrix in [21], RTV regularization by using the 
L1 norm is introduced and is defined as follows:

(6)

where  represents the gradient in the x direction of matrix 
L and  is its counterpart in the y direction.

3.3. RTV-WSPM MODEL
The corresponding noise degradation model of an image can 

be formulated as the following matrix form:

(7)

where Y denotes the observation image, L is the recovered im-
age, S represents the sparse error term, such as impulse noise, and 
N is the Gaussian noise. Matrices X, S, and N have the same size as 
Y with overlapped patches.

Natural images with low rank and local piecewise smoothing 
priors are exploited by WSPM through low rank and sparsity. How-
ever, the spatial smoothing structure of the images is employed. 
A RTV-WSPM model based on the WPNM model in Eq. (4) is pro-
posed in this study by combining sparse and RTV constraint terms 
and is described as follows:

(8)

where a, b, l, and g are regularization coefficients;  is 
the Schatten p-norm term; and  is the smoothness pres-
ervation term (which includes the prior sparsity information of the 
images); the three-term  is the L1 norm and the sparsity regu-
larization term and is used as the fidelity term of impulse noise; 
and  is the Frobenius norm, which is used as the fidelity 
term of Gaussian noise.
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3.4. SOLUTION FOR RTV-WSPM WITH ADMM
The variable splitting method is employed to solve RTV-WSPM. 

By introducing an augmented variable (Z), the RTV-WSPM model 
can be reformulated as a linear equality-constrained problem with 
two variables (L and Z). Eq. (8) can be solved under the ADMM 
[7] framework. The augmented Lagrangian function is as follows:

(9)

As the four variables (L, Z, I, G) of Eq. (9) are independent, 
the augmented Lagrange multiplier (ALM) [7] is applied to relax 
the equality constraints of (9), and the following function is ob-
tained as the following:

(10)

where W is the Lagrange multiplier matrix associated with 
constraint L + G + I = Y,  is the Lagrange multiplier matrix as-
sociated with constraint L=Z, and  is a positive scalar.

Subsequently, the general framework of the ADMM is used to 
solve Eq. (10) by the following iterative scheme.

(1) �Update L at the (k+1)th iteration and fix other variables, 
except for L in Eq. (10) to obtain the following sub-prob-
lem:

(11)

where . By ordering 
, the optimal solution of Eq. (11) will 

be  with ,where  is given 
by generalized soft-thresholding [5].

(2) �Update Z for spatial smoothness preservation and fix other 
variables, except for Z in Eq. (10), to obtain the following 
sub-problem:

(12)

where . Many efforts have been made to de-
velop efficient and scalable algorithms for the TV problem. Here, 
we adopt the fast gradient based algorithm [18] to solve the sub-
problem (Eq.(12)).

(3) �Update I for impulse noise removal and fix other variables, 
except for I in Eq. (10), to obtain the following sub-prob-
lem:

(13)

where . Thereafter, the closed form 
solution of Eq. (13) can be obtained by resorting to the elementwise 
shrinkage operator, that is, .

(4) �Update G for Gaussian noise removal and fix other variables, 
except for G in Eq. (10), to obtain the following sub-problem:

(14)

where . This outcome is a standard 

least squares regression problem, and the closed-form solution is 
.

(5) Update W and  using the following equations:

(15)

where  is a shrinkage factor for facilitating further the 
convergence speed and  is the maximum value of .

3.5. RTV-WSPM FOR IMAGE DENOISING
The nonlocal similar patches of observation data y in a large 

enough local window are searched by methods such as the K-
nearest neighbor. By stacking those nonlocal similar patches into 
a matrix and denoting by Yi, we have Yi = Li + Si +Ni, where Li, Si, 
and Ni are the patch matrices of the original image, impulse noise, 
and Gaussian noise, respectively.

Algorithm 1 provides the details of the proposed RTV-WSPM 
operator for each Yi to estimate Li for image denoising. Algorithm 
2 summarizes the proposed algorithm of RTV-WSPM for the whole 
image denoising.

Algorithm 1 RTV-WSPM operator for each Yi to estimate Li

Input: Noisy image Yi

1: Initialize: 

2: while not converged do
3: Apply the RTV-WSPM operator to Yi to estimate Li, Update 

 by (11), (12), (13), (14), and 
(15), respectively;

4: Check the convergence conditions

5: end while
Output: Denoised image Li

Algorithm 2 Image denoising via RTV-WSPM

Input: Noisy image y
1: Initialize l’(0) = y; y(0) = y

2: for k=1:K do

3: Iterative regularization y(k) = l’(k-1) + δ(y – y’(k-1))

4: for each patch Yi in y(k) do

5: Find similar patch group Yi

6: Apply Algorithm 1 to Yi to estimate Li

7: end for

8: Aggregate Li to form the clean image l’(k)

9: end for

Output: Denoised image L(K)

4. RESULT ANALYSIS AND DISCUSSION
In this section, the proposed RTV-WSPM-based image denois-

ing algorithm was compared with several state-of-the-art denois-
ing methods, including BM3D [2], WNNM [5], RM [8], and WSNM 
[9]. The baseline NNM algorithm was also compared. All the com-
peting methods employ the image non-local redundancies. Aside 
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from visual quality, we also employed two quantitative quality 
indexes—the peak signal-to-noise ratio (PSNR) and feature struc-
tural similarity (FSIM)—to measure the reconstruction accuracies. 

The PSNR and FSIM are defined in Eq. (16) and (17).

(16)

where denotes the original image and  is the restored im-
age,  represents the maximum function.

  
FSIM is defined as

(17)

where ( )G z is the gradient magnitude for the position z ,
(z)PC  denotes phase congruency for position z of image I and 

 is the whole image spatial domain.
Noisy MRI images, 50 natural images from the Berkeley 

(BSD200) datasets, and 20 images of different sizes from the USC-
SIPI image database were selected for quantitative assessment. All 
the experiments were run in MATLAB 2015a on a 64-bit personal 
computer with an Intel(R) Core(TM) i5-2520M CPU @ 2.5GHz 
CPU and 8 GB memory.

The proposed algorithm has several parameters. For all noise 
levels, iterative regularization parameter δ and parameter p were 
fixed to 0.1 and 0.8, respectively. Iteration number K and patch 
number g were set on the basis of the noise level. By experience, 

we set the patch size to 7 × 7. K was set to 8, and g was set to 80. 
The a, b, l, g, m, and r of the RTV-WPSM model are 0.1, 0.005, 
0.002, 0.87, 10-6, and 1.1, respectively. The source codes of the 
competing methods were obtained from the original authors, and 
we used the default parameters.

4.1 EXPERIMENTAL RESULTS ON NOISY MR IMAGES AND 
50 TEST IMAGES

We initially demonstrated the effectiveness of the proposed 
RTV-WSPM method for white Gaussian additive noise removal. 
The Gaussian white noises with standard deviations of 30, 40, 50, 
60, and 70 were added to the test images as the noisy observa-
tions to quantitatively evaluate the performance of the proposed 
method.

Fig. 1 depicts the PSNR and FSIM average results of the pro-
posed RTV-WSPM denoising method compared with the compet-
ing denoising techniques of BM3D, WNNM, RM, and WSPM.

The proposed RTV-WSPM and WSNM achieve the highest 
PSNR values in all cases (Fig. 1). Moreover, the proposed RTV-
WSPM, BM3D, and WSNM outperform the RM and WNNM (Fig. 
1[a]) using the noise with standard deviations of 30, 40, and 50. 
As RM adopts hard threshold shrinkage, image structure informa-
tion is lost quickly as noise with the increase of standard devia-
tion. Clearly, the proposed method enjoys evident gain over the 
four competing anchors on average at different noise levels (Fig. 
1[b]) by the average value of FSIM. Thus, the structure information 
of the image can be well retained by adding RTV regularization. 
Conversely, the probability of losing the image structure with a 
low-rank structure of matrix forms a similarity image block that 
can be effectively reduced to improve the denoising performance.

Fig. 1: Comparison of the PSNR and FSIM results of different methods for image denoising on 50 images from Berkeley. (a) PSNR values and (b) FSIM values

Fig. 2: Denoising results on brain MRI images with noise. From left to right: (a) noisy input (σ= 35), (b) RM, (c) BM3D, (d) WSPM, (e) WNNM, and (f) the proposed 
RTV-WSPM
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Fig. 2 depicts the comparison of the denoising of brain MRI 
images with noise. The core part of the brain for denoising is fuzzy 
with the RM and WNNM algorithms (Fig. 2).More importantly, the 
proposed method produces the restored images of good percep-
tual quality. The output of Fig. 2(f) are evidently clearer, have sev-
eral details, and show few artifacts. Such image is more helpful for 
auxiliary medical diagnosis.

4.2. EXPERIMENTAL RESULTS ON 20 TEST IMAGES WITH 
SALT-AND-PEPPER NOISE

In this subsection, we aim to test the salt-and-pepper noise 
removal on 20 test images from the USC-SIPI image database. 
The fragments of restoration results on the male image (Fig. 3) 

shows the visual comparison of all methods. Clearly, our proposed 
RTV-WSPM achieves higher perceptual quality, meaning that RTV-
WSPM outperforms other competing methods for salt-and-pepper 
noise removal.

The lawn texture details of Fig. 3(c) are clear and well pre-
served by the proposed RTV-WSPM denoising method, whereas 
the other methods have serious ambiguities in the ground texture 
of the denoising details (Figs. 3[d]–[g]).

Table 1 lists the average PSNR and FSIM results of all denois-
ing methods on four testing images (boat, male, peppers, and 
Pentagon). Our proposed RTV-WSPM achieves the highest PSNR 
values in almost cases. RTV-WSPM outperforms the best compet-
ing methods at least 0.86 dB and 0.102, respectively. Our proposed 

Fig. 3: Fragments of restoration results on a male image by different methods (noise level 30%); (a) original image, (b) noisy image, (c) proposed RTV-WSPM, (d) 
WNNM, (e) WSPM, (f) BM3D, and (g) RM. The patch in white window represents the part patch. (c)–(g) are the details of the restoration results for the patch in the 
white window

Table 1: Quantitative comparison of the denoised results of different methods in terms of PSNR and FSIM with different noise levels

τ Image Proposed WNNM RM WSNM BM3D

0.2

Boat 32.29/0.943 31.37/0.913 31.23/0.901 31.68/0.912 31.58/0.911

Male 31.79/0.939 31.53/0.910 31.19/0.907 31.25/0.921 31.90/0.919

Peppers 32.23/0.901 31.08/0.889 31.25/0.892 31.89/0. 917 31.85/0. 922

Pentagon 31.95/0.921 31.28/0.901 31.75/0.863 31.47/0.902 31.90/0.910

0.3

Boat 30.99/0.833 28.98/0.827 28.86/0.842 29.19/0.848 28.74/0.842

Male 30.65/0.894 28.58/0.821 27.96/0.829 28.81/0.859 28.52/0.831

Peppers 30.58/0.887 28.71/0.841 27.89/0.819 28.76/0.812 28.54/0.827

Pentagon 30.42/0.893 28.63/0.830 27.94/0.853 28.68/0.805 28.72/0.841

0.4

Boat 28.22/0.821 27.13/0.712 26.31/0.703 27.35/0.745 27.10/0.727

Male 28.16/0.837 26.78/0.704 26.20/0.651 27.46/0.760 27.02/0.704

Peppers 28.44/0.803 26.22/0.692 26.16/0.609 27.30/0.725 26.52/0.687

Pentagon 28.68/0.819 26.42/0.699 26.05/0.608 27.27/0.713 26.32/0.647
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RTV-WSPM reconstructed images with noise by ratio τ from 0.2 
to 0.4 and achieved higher PSNR and SSIM values in all cases 
over other competing methods. Therefore, the RTV-WSPM is more 
robust to the changes of the ratios of impulse noise on the 20 test 
images than the other competing methods.

5. CONCLUSION
To enhance the image structure retention of the WSPM algo-

rithm, the RTV-WSPM, a weighted Schatten p-norm minimization 
with RTV regularization, is proposed in this study to minimize the 
over-smoothing from denoising. The experiments reveal that our 
proposed method outperforms other techniques. Thus, several ob-
servations can be drawn:

(1) �For the image denoising with a salt-and-pepper noise task, 
low-rank approximations with TV regularization-based 
approaches outperform other approximation-based ap-
proaches.

(2) �The comparison of PSNR and FSIM and visual effects indi-
cates that RTV-WSPM is applicable for a variety of noises, 
including Gaussian, salt-and-pepper, and mixed noise. This 
capability is mainly due to the fact that our model exploits 
the RTV relationships in the local window and local spatial 
smoothness.

Since RTV-WSPM need calculation low rank by SVD, 
the time complexity of the algorithm is too difficult to apply the 
practical application. Therefore, several directions may be consid-
ered in future work. Developing fast and scalable parallel comput-
ing algorithms for our proposed model should be considered. One 
potential scheme is to utilize an optimization technique that con-
siderably reduces the calculation to capture the low-rank property.
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