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RESUMEN

e|a eliminacion de ruido es uno de los problemas clésicos en el
procesamiento de imagenes. Esta eliminacion por aproximacion
del rango minimo a través de la minimizacion del p de la norma
Schatten es propensa a causar sobre-alisamiento y no distingue
en absoluto las estructuras intrincadas e irregulares de las
imagenes. En este estudio se propuso un modelo flexible y preciso
llamado minimizacion ponderada del p de la norma Schatten
(WSPM) con regularizacion de la variacion total relativa (RTV-
WSPM) para abordar este tema. EI RTV-WSPM propuesto no sélo
tiene una aproximacion precisa con una norma p de Schatten,
sino que también considera el conocimiento previo en el que
los diferentes componentes del rango tienen una importancia
diferente segun la variacion total relativa. Ademas, se introduce
el método de direccion alterna de los multiplicadores para
resolver el modelo RTV-WSPM propuesto. Los experimentos con
el ruido blanco gaussiano y el ruido “sal y pimienta" demuestran
que la técnica propuesta supera a otros métodos de vanguardia,
especialmente a la degradacion por ruido de imagen de alta
densidad. En términos de evaluacion de la relacion sefal/ruido de
pico, el RTV-WSPM propuesto logra aproximadamente mejoras de
0,814 dB sobre el convencional WSPM bajo ruido "sal y pimienta”.
Por lo tanto, el RTV-WSPM ejerce un buen efecto para restaurar
la estructura y la suavidad de la imagen y mejora las prestaciones
de eliminacion de ruido.

® Palabras clave: Minimizacion ponderada de la norma Schatten,
eliminacion de ruido en imagen, aproximacion de la matriz de
bajo rango, modelo RTV.

ABSTRACT

Image denoising is one of the classical problems in image
processing. Such denoising by minimum rank approximation via
Schatten p-norm minimization is prone to cause over-smoothing.
Intricate and irregular image structures cann't be distinguished
dramatically by Schatten p-norm minimization. A flexible and
precise model named weighted Schatten p-norm minimization
(WSPM) with relative total variation regularization (RTV-WSPM)
was proposed in this study to address this issue. The proposed
RTV-WSPM not only had an accurate approximation with a Schat-
ten p-norm but also considered the prior knowledge where differ-
ent rank components have different importance by relative total
variation. Moreover, the alternating direction method of multi-
pliers was introduced to solve the proposed RTV-WSPM model.
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Experiments on Gaussian white noise and salt-and-pepper noise
demonstrate that the proposed technique outperforms other
state-of-the-art methods, especially under degradation for high-
density image noise. In terms of peak signal-to-noise ratio evalu-
ationthe proposed RTV-WSPM achieves significant improvements
over the conventional WSPM under salt-and-pepper noise. There-
fore, the RTV-WSPM exerts a good effect to restore the image
structure and smoothness and improves denoising performances.

Keywords: Weighted Schatten p-norm minimization; image
denoising; low rank matrix approximation; RTV norm.

1. INTRODUCTION

Using images to acquire and transmit information is an im-
portant approach for humans. The important details of images
and their quality are usually corrupted by noise when an im-
age is captured in the real world. Thus, recovering a clean image
from its noisy version in such a way that the clean image retains
fine structure and texture details is crucial. As image denoising
is a pathological problem, its performance mainly relies on prior
knowledge.

Image denoising has been extensively studied in the past de-
cades. Patch-based image denoising methods with nonlocal self-
similarity (NSS) prior, such as non-local means (NLM) [1] and block
matching 3D (BM3D) [2], have attained competitive and state-of-
the-art image denoising results. These techniques achieve satis-
factory performances under a low noise level. However, their per-
formance in the recovery of fine details in mixed noise image is
unsatisfactory.

Given that the matrix formed by the image blocks of natural
images has a low-rank property, the structures hidden in the ma-
trix are restored by combining low-rank matrix approximations
(LRMAs) and NSS. Thus, image denoising can be regarded as a
typical LRMA problem. Recently, image denoising methods based
on LRMAs had showed significant improvements for recovering
severely corrupted images [3-6]. However, the rank minimization
model problem, which entails nonconvexity, is a NP problem and
is difficult to solve. The nuclear norm is the tightest convex relax-
ation for the rank minimization problem. In such a problem, the
nuclear norm is used to replace the matrix rank, and this approach
is widely used in the fields of computer vision and machine learn-
ing through solving the nuclear norm minimization.

Existing methods based on LRMAs, such as weighted nuclear
norm minimization (WNNM) [3] and weighted Schatten p-norm
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minimization (WSPM) [4], mainly exploit the non-local self-simi-
larity of image structure and approximate the original rank mini-
mization by solving the nuclear norm minimization problem.

Although LRMAs maximize NSS on the patch level, they usu-
ally produce over-smooth estimates and fail to preserve signifi-
cant features, textures, and edges because structures with ir-
regular patterns become weak in NSS prior. For a textural image,
textures with regular patterns can be well represented by a low
rank model due to the numerous repeated structures involved.
However, textures with irregular patterns may have insufficient
repetitive structures such that they cannot be well represented by
a patched-based low-rank model. Accordingly, LRMAs sometimes
smoothen out fine details even with a low noise level.

This study inspired by the Schatten p-norm first focused on
the WSPM-based model that integrates the relative total variation
(RTV) norm constraint into the model to remove the noise from the
observation data to address the over-smoothing problem caused
by a low rank model. The alternating direction method of multipli-
ers (ADMM) algorithm was applied iteratively to remove Gaussian
white and salt-and-pepper noises. The experiment results of the
proposed method demonstrate its state-of-the-art performance
in view of quantitative evaluation and subjective visual quality.

2. STATE OF THE ART

In recent years, techniques based on NSS and low-rank prior
de-noising methods have been actively studied [1-6] and have
achieved good performances under various noises. Luo et al. [1]
utilized the L1 norm to estimate the L2 distance and lowered the
computation complexity for NLM. Liu et al. [4] proposed a WSPM
based on WNNM for image denoising and background subtraction
and achieved good results. Dong et al. [6] suggested an image
restoration method combining nuclear norm minimization (NNM)
and the L2 and L1 norm sparse groups with bilateral variance
estimation. The approach achieved a satisfactory effect, but the
over-smoothing of the image structure persisted. Gu et al. [7] put
forward a low-rank model with WNNM to approximate rank mini-
mization according to the reconstruction of the matrix formed by
image blocks with high structural similarity. The technique had a
good effect on Gaussian noise through the rank minimization of
the image structure, but the effect was not ideal when the image
structure was not rich.

Hosono et al. [8] proposed multi-channel tensor weighted nu-
clear norm minimization based on WNNM [7] for color real image
denoising, in which the denoising performance was significantly
improved by estimating the noise statistics of the three channels of
a color image with channel redundancy and introducing a weight
matrix to balance data fidelity between channels. Huang et al. [9]
developed rank minimization as the regularizing term rather than
the nuclear norm by the NSS scheme, solved the hard threshold-
ing operation of the singular values of observation matrices, and
applied the technique to remove Gaussian white noise in images.
The rank minimization algorithm [9] had a good denoising effect
in the logarithmic domain. Signoretto et al. [10] used the tensor
low-rank property with application to spectral data and compared
the low-rank tensor and matrix on the basis of the tensor nuclear
norm minimization to estimate the low-rank tensor, resulting in
tensor nuclear norm minimization that performed effectively. Feng
et al. [11] suggested a blind seismic signal denoising algorithm
called W-WNNM and that is based on the WNNM model. The W-
WNNM estimated the noise level by principal component analysis
and controlled the shrinkage of a singular value of the matrix by
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weights to remove the random noise of the seismic signal.

NNM is a convex substitute of the low rank of the matrix by
estimating all non-zero singular values and is employed for many
applications. In line with NNM, a truncated nuclear norm con-
straint named by TNNR was proposed by Hu et al. [13] and op-
timized the minimum sum of the singular value, which can be
approximate to low-rank representation. However, the NNM and
TNNR do not assign different weights to different singular values
when the singular value threshold shrinks. In the decomposition
principle of singular value decomposition (SVD), the higher the
singular value, the richer the image information. Thus, some useful
information is lost when the threshold shrinks. Mohan et al. [14]
put forward an iterative reweighting algorithm to assign differ-
ent weights to different singular values, an approach that esti-
mated the low rank for preserving structure detail information,
but encountered difficulty in adjusting parameters to obtain the
optimal effect. Eriksson et al. [15] proposed the matrix comple-
tion model of missing data in which the L1 norm replaces the LO
norm and which had a good effect on image denoising. Further-
more, Chatterjee et al. [16] developed a near-optimal patch-based
method for image denoising, which had a significant performance
on Gaussian noise but required extensive computation. All the
aforementioned methods can be applied to image denoising and
achieve outstanding performances. However, sometimes they still
over-smooth image textures and edges, thereby degrading the im-
age visual quality. A flexible and precise model named weighted
Schatten p-norm minimization with relative total variation requ-
larization (RTV-WSPM) is proposed in this study to address such
a problem.

The rest of the study is organized as follows: Section 3 briefly
introduces the WPNM model and RTV and the RTV-WSPM model
and the corresponding efficient optimization algorithm developed
by the ADMM; Section 4 presents the experimental results and
discusses the differences between our proposed method and other
techniques; and Section 5 concludes this paper.

3. METHODOLOGY

3.1. WPNM MODEL

Given the original image x from its noisy observation y and
X its pixel at location i, under the assumption that a simple ad-
ditive noise is zero-mean Gaussian with isotropic variance, the
observed noisy image can be modeled as y = x + n, where n is
additive Gaussian noise. LRMAs mainly include low-rank matrix
factorization (LRMF) and the low-rank minimization method [6].
Given matrix Y, the goal of LRMF is to identify matrix X that is as
close to Y as possible under certain data fidelity. Moreover, matrix
X can be decomposed into the product of two low-rank matrices.
LRMF is a non-convex optimization problem, making it difficult
to solve. Conversely, low-rank minimization is a non-convex opti-
mization problem, and LRMAs are realized by replacing low-rank
minimization with NNM, which is a convex optimization problem
that is easily resolved.

To make the problem practicable, the LRMA problem can be
approximately solved by a convex relaxation of optimizing the
NNM problem [5] as follows:

X' =arg min|)V - X[ + A|X
X

o (1)

where Y e R™" is the observation data, 4 >0 is a posi-
tive constant for balancing between the low-rank regulariza-
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tion and fidelity terms, X e R™" denotes a low-rank matrix,
rank(X) << min(m, n) and | X|, = >.™""" 5,(X) is the nucle-
ar norm regularization term, defined as the sum of its singular
values, and o,(X) is the ith singular value of X.

Cai et al. [12] proved that LRMAs based on NNM can be solved
easily by the soft threshold operation of a singular value of the
observation matrix. Its optimum solution can be effectively solved
by the singular value thresholding operation as follows:

X =Us,@p"

where Y=UzV"is the SVD, 2 =diag(o,(X),
0,(X),..,0.(X)), r=min(mn) and £,(®) is the gen-
eralized soft thresholding operator with weight vector as
¢, (%), =max(Z, —4,0) for each diagonal element Z,.

NNM suffers from the over shrinking problem when it shrinks
different components equally with the same value, and such com-
ponents have clear physical meanings and should be treated dif-
ferently. The capability and flexibility of NNM are greatly restricted
in practice. To overcome the shortcomings of NNM and well ap-
proximate the rank function, Gu et al. [5] presented a reasonable
NNM called the WNNM, which is defined as follows:

X :arg;nin”Y—X”; + || X]|

- 3)
B min(m,n)
|x],. =25 @0, (X)
where @ =———— denotes the weight of the jth singular
value o, (X). Gi(X)+7

The WSPM based on WNNM proposed by Xie et al. [4] is a
feasible scheme. The flexibility of the model is greatly improved
in many applications by simulating the rank function by shrinking
each singular value depending on its magnitude and combining a
weak restriction supported by setting the power. The Schatten p-
norm of the WSNM problem can be formulated as follows:

X' =arg min[ly ~ X[} + 2|X]° . @
X wSp

where  the  reqgularization term is  defined as

‘:S :z:ln(m’")a)io-f(X) with power p €(0,1].

Thé optimum solution of WSNM can be achieved by trans-
forming Eq. (4) into a series of independent nonconvex lp—norm
subproblems that can be iteratively solved by the generalized soft

threshold algorithm.

|x

3.2. RELATIVE TOTAL VARIATION REGULARIZATION

Although total variation (TV) regularization is a highly effec-
tive way of smoothing noise and preserving edges, it tends to pro-
duce a serious staircase effect in the denoised images. To address
the problem, Beck et al. [20] proposed a relative total variation
regularization model that is simple but effective based on novel
local variation measures. Relative Total Variation (RTV) regulariza-
tion has the advantage of extracting image edge texture and other
details under the complication of texture patterns, which could
be reqular, near-regular, or irregular, and is helpful for preserving
the important structures of image denoising. RTV [21], a variant of
TV, was employed to extract edge structure and texture for image
structure extraction and achieved good results.
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RTV regularization is a general pixel-wise windowed total vari-
ation measure in some window R and is written as follows:

Z Gp)q ) (aVS)q

qeR(p)

> G, -|(6Vs)q|+3 ’

q€R(p)

Lg(s), =

where g belongs to R(p), the rectangular region centered at
pixel p, and & >0 is a weight. € is a small positive number to
avoid division by zero, Oyare the partial derivatives in horizontal
and vertical directions V = {x,y} and G,, is a weighting func-
ti.on_and defined by G :exp(—(p—q)z),where o is standard de-
viation. P4 207

In contrast to the traditional TV reqularization with gradient
information, Eq. (5) has a stronger noise immune capability by
using image structure on a patch rather than a pixel level. Lg
can indicate regional structure. The corresponding weight must
be reduced to retain the structure. In the case of a flat region,
the smaller the Lg value, the bigger the weight. According to the
description of the matrix in [21], RTV regularization by using the
L1 norm is introduced and is defined as follows:

12 =2

P

vIr VD
Lg(Ly, Lg(L),

[ (6)

1

1

where VL' represents the gradient in the x direction of matrix
Land VI is its counterpart in the y direction.

3.3. RTV-WSPM MODEL
The corresponding noise degradation model of an image can
be formulated as the following matrix form:

Y = L+ S+N, (7

where Y denotes the observation image, L is the recovered im-
age, S represents the sparse error term, such as impulse noise, and
N is the Gaussian noise. Matrices X, S, and N have the same size as
Y with overlapped patches.

Natural images with low rank and local piecewise smoothing
priors are exploited by WSPM through low rank and sparsity. How-
ever, the spatial smoothing structure of the images is employed.
A RTV-WSPM model based on the WPNM model in Eq. (4) is pro-
posed in this study by combining sparse and RTV constraint terms
and is described as follows:

R R

st. L+G+I=Y

arg min a||L
LILG

4
w,

where «, 5, A, and y are regularization coefficients; ||L is is
the Schatten p-norm term; and L RTV is the smoothness prpes-
ervation term (which includes the prior sparsity information of the
images); the three-term ||I | is the L, norm and the sparsity regu-
larization_term and is used as the fidelity term of impulse noise;
and ||G||F is the Frobenius norm, which is used as the fidelity
term of Gaussian noise.
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3.4. SOLUTION FOR RTV-WSPM WITH ADMM

The variable splitting method is employed to solve RTV-WSPM.
By introducing an augmented variable (Z), the RTV-WSPM model
can be reformulated as a linear equality-constrained problem with
two variables (L and Z). Eq. (8) can be solved under the ADMM
[7] framework. The augmented Lagrangian function is as follows:

C)

+hlz,,,

st L+G+I=Y,L:Z

As the four variables (L, Z, I, G) of Eq. (9) are independent,
the augmented Lagrange multiplier (ALM) [7] is applied to relax
the equality constraints of (9), and the following function is ob-
tained as the following:

M ,(LZLG;W,3)= a||L||" + B2, + AN, +y||G|| + +[L- z+

)(10)

(L+G+I- Y-}-E
Pl

where W is the Lagrange multiplier matrix associated with
constraint L+ G +I=Y, J is the Lagrange multiplier matrix as-
sociated with constraint L=Z, and 2 is a positive scalar.
Subsequently, the general framework of the ADMM is used to
solve Eq. (10) by the following iterative scheme.
(1) Update L at the (k+1)th iteration and fix other variables,
except for L in Eq. (10) to obtain the following sub-prob-
lem:

. . 1
L,, =argminM ,(L,Z,.I,,G,;W,,3,) =argmin —|L|” +—[L-D,[}.(11)
L L pk wSp 2

W, +3
D, =2 (V+2, -1, -Gy - ) |
where Pr . By ordering
D, = Udiag(o,, 2’"°O-r)V , the optimal solution of Eqg. (11) will
be L,,, =U,AV, with A=diag(5,,6,,..6,),where &, is given

by generalized soft-thresholding [5].

(2) Update Z for spatial smoothness preservation and fix other
variables, except for Z in Eq. (10), to obtain the following
sub-problem'

Z,. = argmm—”Z”

1
EHZ_Tk”i (12)

where T, =L, +3, / p, . Many efforts have been made to de-
velop efficient and scalable algorithms for the TV problem. Here,
we adopt the fast gradient based algorithm [18] to solve the sub-
problem (Eq.(12)).
(3) Update I for impulse noise removal and fix other variables,
except for I in Eq. (10), to obtain the following sub-prob-
lem:

A 1
I, = arg;mnp—”l"1 +5||I—Ek||i, (13)
k

where E, =Y—-L,,, -G, —™/ . Thereafter, the closed form
solution of Eq. (13) can be obtained by resorting to the elementwise
shrinkage operator, that is, I, = sign(E,) max {|E,|— %, ,0}.
(4) Update G for Gaussian noise removal and fix other variables,
except for G in Eq. (10), to obtain the following sub-problem:

Gy, =argmin |G, + 2G-S, (19
where S, = Y-L,, -1, —“%k . This outcome is a standard
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Ieast squares regression problem, and the closed-form solution is

G, =C2xr+p)"' pS;

(5) Update W and I using the following equations:

W, =W +po, L, +G,, +1,
3=+, -Z,,) >

Prn =MIN{UX P, P}

_Y)

(15)

where #>1 is a shrinkage factor for facilitating further the
convergence speed and P is the maximum value of 2.

3.5. RTV-WSPM FOR IMAGE DENOISING

The nonlocal similar patches of observation data y in a large
enough local window are searched by methods such as the K-
nearest neighbor. By stacking those nonlocal similar patches into
a matrix and denoting by Y, we have Y, =L + S, +N, where L, S,
and N, are the patch matrices of the original image, impulse noise,
and Gaussian noise, respectively.

Algorithm 1 provides the details of the proposed RTV-WSPM
operator for each Y, to estimate L, for image denoising. Algorithm
2 summarizes the proposed algorithm of RTV-WSPM for the whole
image denoising.

Input: Noisy image Y,
1:Initialize: L=Z=1=G=W=
2: while not converged do

3: Apply the RTV-WSPM operator to Y to estimate L, Update

Lk+1’ Zk+1’ k+1” Gk+1’ Wk+1 4 ‘Sk+1 by [11)' (12)' (13)' (14)' and

(15), respectively;

=0, §=107, 0, and p=0.6

4: Check the convergence conditions
5: end while
Output: Denoised image L,

Input: Noisy image y

: Initialize 1@ = y; 9 =y

: for k=1:K do

: Iterative regularization y® = /%0 4+ §(y - y*7)
: for each patch Y, in ¥ do

: Find similar patch group Y,

: Apply Algorithm 1 to Y, to estimate L,

:end for

: Aggregate L to form the clean image /¥

O© 0O N O O W N =

:end for
Output: Denoised image L®

4. RESULT ANALYSIS AND DISCUSSION

In this section, the proposed RTV-WSPM-based image denois-
ing algorithm was compared with several state-of-the-art denois-
ing methods, including BM3D [2], WNNM [5], RM [8], and WSNM
[9]. The baseline NNM algorithm was also compared. All the com-
peting methods employ the image non-local redundancies. Aside
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from visual quality, we also employed two quantitative quality

indexes—the peak signal-to-noise ratio (PSNR) and feature struc-

tural similarity (FSIM)—to measure the reconstruction accuracies.
The PSNR and FSIM are defined in Eq. (16) and (17).

PSR = 101g ML)

2 (16)
|7-71,

where f denotes the original image and f is the restored im-
age, Max( f, /) represents the maximum function.

FSIM is defined as
>...G(2)*PC(2)
ZZEQ PC(Z)

where G(z)is the gradient magnitude for the positionz,
PC(z) denotes phase congruency for position z of image | and
Q is the whole image spatial domain.

Noisy MRI images, 50 natural images from the Berkeley
(BSD200) datasets, and 20 images of different sizes from the USC-
SIPl image database were selected for quantitative assessment. All
the experiments were run in MATLAB 2015a on a 64-bit personal
computer with an Intel(R) Core(TM) i5-2520M CPU @ 2.5GHz
CPU and 8 GB memory.

The proposed algorithm has several parameters. For all noise
levels, iterative regularization parameter § and parameter p were
fixed to 0.1 and 0.8, respectively. Iteration number K and patch
number g were set on the basis of the noise level. By experience,

FSIM = (17)

~_
S
% 30 | \ 77 ‘x\l e
o 2 ™ - e "
7 —— WNNM N =z T
Q o9 O— RM - W
—— WSPM S
—_— BM3D {
28 —<— RTV-WSPM
27 1 1 1 1 1
30 40 50 60 70
Noise level

(a)
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we set the patch size to 7 x 7. Kwas set to 8, and g was set to 80.
The o, B, A, 7, w, and p of the RTV-WPSM model are 0.1, 0.005,
0.002, 0.87, 105, and 1.1, respectively. The source codes of the
competing methods were obtained from the original authors, and
we used the default parameters.

4.1 EXPERIMENTAL RESULTS ON NOISY MR IMAGES AND
50 TEST IMAGES

We initially demonstrated the effectiveness of the proposed
RTV-WSPM method for white Gaussian additive noise removal.
The Gaussian white noises with standard deviations of 30, 40, 50,
60, and 70 were added to the test images as the noisy observa-
tions to quantitatively evaluate the performance of the proposed
method.

Fig. 1 depicts the PSNR and FSIM average results of the pro-
posed RTV-WSPM denoising method compared with the compet-
ing denoising techniques of BM3D, WNNM, RM, and WSPM.

The proposed RTV-WSPM and WSNM achieve the highest
PSNR values in all cases (Fig. 1). Moreover, the proposed RTV-
WSPM, BM3D, and WSNM outperform the RM and WNNM (Fig.
1[a]) using the noise with standard deviations of 30, 40, and 50.
As RM adopts hard threshold shrinkage, image structure informa-
tion is lost quickly as noise with the increase of standard devia-
tion. Clearly, the proposed method enjoys evident gain over the
four competing anchors on average at different noise levels (Fig.
1[b]) by the average value of FSIM. Thus, the structure information
of the image can be well retained by adding RTV regularization.
Conversely, the probability of losing the image structure with a
low-rank structure of matrix forms a similarity image block that
can be effectively reduced to improve the denoising performance.

0.94 | ~—
RN
092 | N —\—; S .
9 . RN e
L Y
0.90 D\\. _ ~
. ) &1 Y e N
~ T N
= 088 | i Xi. .
@» i ) . S e
L ~ O -
oss | —O— WNNM O
RM R
—7— WSPM
084 o BM3D
——RTV-WSPM
0.82 |- T
1 1 L 1 1
30 40 50 60 70
Noise level

(b)

Fig. 1: Comparison of the PSNR and FSIM results of different methods for image denoising on 50 images from Berkeley. (a) PSNR values and (b) FSIM values

Fig. 2: Denoising results on brain MRI images with noise. From left to right: (a) noisy input (o= 35), (b) RM, (c) BM3D, (d) WSPM, (e) WNNM, and (f) the proposed
RTV-WSPM
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Fig. 3: Fragments of restoration results on a male image by different methods (noise level 30%); (a) original image, (b) noisy image, (c) proposed RTV-WSPM, (d)
WNNM, (e) WSPM, (f) BM3D, and (g) RM. The patch in white window represents the part patch. (c)-(g) are the details of the restoration results for the patch in the
white window

Fig. 2 depicts the comparison of the denoising of brain MRI
images with noise. The core part of the brain for denoising is fuzzy
with the RM and WNNM algorithms (Fig. 2).More importantly, the
proposed method produces the restored images of good percep-
tual quality. The output of Fig. 2(f) are evidently clearer, have sev-
eral details, and show few artifacts. Such image is more helpful for
auxiliary medical diagnosis.

4.2. EXPERIMENTAL RESULTS ON 20 TEST IMAGES WITH
SALT-AND-PEPPER NOISE

In this subsection, we aim to test the salt-and-pepper noise
removal on 20 test images from the USC-SIPI image database.
The fragments of restoration results on the male image (Fig. 3)

shows the visual comparison of all methods. Clearly, our proposed
RTV-WSPM achieves higher perceptual quality, meaning that RTV-
WSPM outperforms other competing methods for salt-and-pepper
noise removal.

The lawn texture details of Fig. 3(c) are clear and well pre-
served by the proposed RTV-WSPM denoising method, whereas
the other methods have serious ambiguities in the ground texture
of the denoising details (Figs. 3[d]-[g]).

Table 1 lists the average PSNR and FSIM results of all denois-
ing methods on four testing images (boat, male, peppers, and
Pentagon). Our proposed RTV-WSPM achieves the highest PSNR
values in almost cases. RTV-WSPM outperforms the best compet-
ing methods at least 0.86 dB and 0.102, respectively. Qur proposed

Boat 32.29/0.943 31.37/0.913 31.23/0.901 31.68/0.912 31.58/0.911
Male 31.79/0.939 31.53/0.910 31.19/0.907 31.25/0.921 31.90/0.919
0.2 Peppers 32.23/0.901 31.08/0.889 31.25/0.892 31.89/0.917 31.85/0. 922
Pentagon 31.95/0.921 31.28/0.901 31.75/0.863 31.47/0.902 31.90/0.910
Boat 30.99/0.833 28.98/0.827 28.86/0.842 29.19/0.848 28.74/0.842
Male 30.65/0.894 28.58/0.821 27.96/0.829 28.81/0.859 28.52/0.831
03 Peppers 30.58/0.887 28.71/0.841 27.89/0.819 28.76/0.812 28.54/0.827
Pentagon 30.42/0.893 28.63/0.830 27.94/0.853 28.68/0.805 28.72/0.841
Boat 28.22/0.821 27.13/0.712 26.31/0.703 27.35/0.745 27.10/0.727
Male 28.16/0.837 26.78/0.704 26.20/0.651 27.46/0.760 27.02/0.704
0.4 Peppers 28.44/0.803 26.22/0.692 26.16/0.609 27.30/0.725 26.52/0.687
Pentagon 28.68/0.819 26.42/0.699 26.05/0.608 27.27/0.713 26.32/0.647

Table 1: Quantitative comparison of the denoised results of different methods in terms of PSNR and FSIM with different noise levels
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RTV-WSPM reconstructed images with noise by ratio Tt from 0.2
to 0.4 and achieved higher PSNR and SSIM values in all cases
over other competing methods. Therefore, the RTV-WSPM is more
robust to the changes of the ratios of impulse noise on the 20 test
images than the other competing methods.

5. CONCLUSION

To enhance the image structure retention of the WSPM algo-
rithm, the RTV-WSPM, a weighted Schatten p-norm minimization
with RTV regularization, is proposed in this study to minimize the
over-smoothing from denoising. The experiments reveal that our
proposed method outperforms other techniques. Thus, several ob-
servations can be drawn:

(1) For the image denoising with a salt-and-pepper noise task,
low-rank approximations with TV regularization-based
approaches outperform other approximation-based ap-
proaches.

(2) The comparison of PSNR and FSIM and visual effects indi-
cates that RTV-WSPM is applicable for a variety of noises,
including Gaussian, salt-and-pepper, and mixed noise. This
capability is mainly due to the fact that our model exploits
the RTV relationships in the local window and local spatial
smoothness.

Since  RTV-WSPM need calculation low rank by SVD,
the time complexity of the algorithm is too difficult to apply the
practical application. Therefore, several directions may be consid-
ered in future work. Developing fast and scalable parallel comput-
ing algorithms for our proposed model should be considered. One
potential scheme is to utilize an optimization technique that con-
siderably reduces the calculation to capture the low-rank property.
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