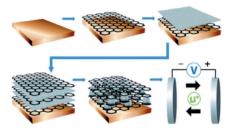
¿Llegará el grafeno a ser de uso común?

n 2004, los investigadores Andrei Geim y Konstantin Novoselov aislaron el grafeno en la Universidad de Manchester (UK) y comprobaron sus propiedades eléctricas. Por ese motivo se les concedió el Premio Nobel de Física de 2010. Desde entonces, la aparición de noticias relacionadas con ese material. las muchas investigaciones que se realizan sobre el mismo y las promesas de aplicaciones reales, llenan las páginas de publicaciones no solo técnicas, sino también las de interés general.


Esa forma de carbono en capas atómicas, tiene también unas características electrónicas, ópticas y mecánicas relevantes, lo que llevó a pensarle como ideal para microprocesadores. Sin embargo, al no haber progresado esta vía, se han vuelto más frecuentes las propuestas de aplicación en pantallas flexibles y, sobre todo en medios de almacenaje de alta energía.

En el primer caso ya se han hecho demostraciones de pantallas táctiles de grafeno en sustitución de las de óxido de indio y estaño, lo que permitiría hacerlas flexibles y situarlas en objetos electrónicos portables (wearables), como prendas de vestir, relojes, etc.

Para baterías, se han ensayado electrodos compuestos por paquetes de nano-columnas de estaño embebidas entre hojas de grafeno depositado sobre películas de estaño y sometido el conjunto a un tratamiento térmico a 300° en atmósfera de argón e hidrógeno.

Para este composite con aproximadamente 70% de estaño y 30% de grafeno, los ensayos de ciclo de vida han mostrado reducciones baias a elevadas densidades de corriente, conservando el 92,5% al cabo de 30 ciclos de descarga.

También se está investigando su aplicación en los supercondensadores, elementos de carga muy rápida que pueden soportar hasta un millón de ciclos, pero que los de pequeñas dimensiones no son capaces de almacenar suficiente energía como, por ejemplo para lo que exige un ordenador o un smartphone. Sin embargo, supercondensadores híbridos formados por grafeno depositado por láser (LSG) y dióxido de manganeso, que pueden ser fabricados sin condiciones especiales, se consiguen hasta

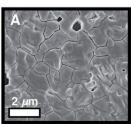
Electrodos de batería con capas de grafeno

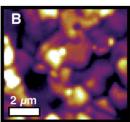
10.000 ciclos de recarga y una capacidad seis veces superior a la de un supercondensador normal.

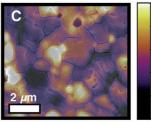
En el campo de la iluminación, la Universidad de Manchester, que recientemente ha abierto el National Graphene Institute, ha presentado una lámpara LED conteniendo un filamento cubierto de grafeno, de precio inferior a las LED convencionales, con un 10% menos de consumo para la misma iluminación y con mayor duración.

A pesar de todos estos avances investigadores, pocos pueden aun predecir cuándo el grafeno llegará a ser un material incluido en aplicaciones de uso

Avances de la perovskita en los paneles solares


n el nº 4 del pasado año, dentro de nuestra sección de Actualidad, presentamos las características de un nuevo material fotovoltaico con posibilidades de sustituir en un futuro ya relativamente cercano al silicio, por su propiedad de convertir la luz solar en electricidad de forma más eficiente y con menores costos de fabricación. El año 2014, se certificó una eficiencia del 20,1%, aun menor que la del silicio (~ 25%), pero que suponía una progresión obtenida en poco más de una decena de años superior a la que el silicio ha conseguido en cincuenta (http://www. revistadyna.com/busqueda/los-descubrimiento-top-ten-de-science-en-2013). Probablemente se trata, en estos momentos, del material más investigado y sobre el que se escriben más artículos científicos.


Unos exámenes recientes por medios microscópicos utilizados en biología (microscopio óptico confocal),


combinados con las imágenes obtenidas con microscopio electrónico, han permitido detectar los defectos que se producen en puntos intergranulares de las películas obtenidas con una solución de ioduro de plomo (PBI₂) en metilamonio (CH₂NH₂), cristalizadas como perovs-

Estos defectos frenan el movimiento de los electrones y reducen la eficiencia fotovoltaica, aunque ya se están estudiando métodos de eliminarlas por

> tratamientos químicos. Como expresa un investigador, "si las placas que consideramos buenas son aun deficientes comparadas con lo que pudieran ser, muestra la potencialidad de mejora futura en los logros que se alcanzarán con estos materiales".

PL Counts (norm.)

Imágenes microscópicas de films solares de perovskita con zonas obscuras intergranulares