IPHOBAC revoluciona el mundo inalámbrico

Fuente: CORD

a comunicación inalámbrica de alta frecuencia está en auge y un equipo de investigadores financiados con fondos comunitarios está conjugando tecnologías ópticas y de radio para desarrollar funciones integradas y componentes fotónicos de onda milimétrica. El proyecto IPHOBAC (Funciones fotónicas integradas de onda milimétrica para conectividad de banda ancha) está financiado con 5,7 millones de euros mediante el Sexto Programa Marco (6PM). El consorcio de este proyecto compuesto por once socios está desarrollando los componentes necesarios para establecer conexiones inalámbricas en las bandas de frecuencias extremadamente altas (EHF) que se encuentran entre los 30GHz y los 300GHz. Los socios de IPHOBAC proceden de Alemania, España, Francia, Eslovenia, Suecia y Reino Unido y proceden de los ámbitos de la investigación, la universidad y la industria. De acuerdo con los investigadores, los componentes contribuirán a que las conexiones a 60GHz se conviertan en una herramienta económica y sólida para quienes no tienen acceso a infraestructuras de ADSL.

Desde que arrancara el proyecto, el consorcio ha producido un transmisor capaz de producir una señal continua en el ancho de banda de las EHF. El transmisor también puede utilizarse en comunicaciones de datos y aplicaciones de radar. Los investigadores ya han llevado a cabo experimentos de campo y han demostrado que con 60GHz se puede proporcionar una conectividad fiable a 10 gigabits por segundo (Gbps) entre dos puntos distanciados entre sí un kilómetro y bajo una lluvia de 25 milímetros a la hora. IPHOBAC se ha propuesto una serie de objetivos, entre ellos el desarrollo de fuentes fotónicas compactas y avanzadas que incluyen «fotomezcladores» (photomixers) de banda ultraancha y de alta potencia basados en fuentes de UTC (fotodiodo unipolar) y TW (onda progresiva) para su integración en antenas, el diseño de transmisores de banda ultra-ancha basados en un enfoque modulador de electroabsorción de onda progresiva (hasta 110GHz), así como la implementación de estructuras de módem de vector fotónico empleando los componentes desarrollados en el proyecto y la demostración de la posibilidad de transmitir una señal inalámbrica a 10Gbps en condiciones de laboratorio. Cabe reseñar que no existen tecnologías de radio u ópticas por sí mismas que puedan hacer funcionar las fuentes compactas, las cuales se emplearán en sistemas de radio por fibra óptica de velocidades de Gbps, aplicaciones para instrumental y antenas controladas. El logro de estos objetivos contribuirá a desarrollar plenamente las funciones integradas y los componentes fotónicos de onda milimétrica para ponerlos a disposición de la industria. Las funciones establecidas por IPHOBAC favorecerán una serie de aplicaciones como las comunicaciones de banda ancha, los radares, la seguridad y la instrumental. Otra labor importante de IPHOBAC consiste en la organización del «Seminario europeo sobre soluciones fotónicas para redes internas, inalámbricas y de acceso», que tendrá lugar entre los días 18 y 20 de mayo de 2009 en **Duisburgo** (Alemania) y donde participan otros ocho proyectos financiados con fondos comunitarios. El seminario se centrará en las tecnologías fotónicas, la provisión de accesos y las redes internas, según informaron los investigadores. Los temas cubiertos incluirán los adelantos en el hardware optoelectrónico para aplicaciones fotónicas inalámbricas y la convergencia de las tecnologías inalámbricas y FTTx.

MOTOR OMNIVORO

Fuente: Infote

Motor Omnivoro Fuente: Argonne National Labboratory

asta el momento los motores de nuestros automóviles, o funcionaban con gasolina, o con gasoil.

Todos conocemos a algún despistado conductor que ha sufrido las consecuencias derivadas de haber repostado gasolina, en lugar de gasoil; o viceversa.

Para evitar estas situaciones, Ingenieros del *Laboratorio Nacional* de **Argonne**, en Chicago, han desarrollado un prototipo de motor capaz de utilizar cualquier alcohol de origen orgánico -etanol, butanol, gasolina o gasoil- o biocombustible.

En la actualidad, los ingenieros diseñan los motores ajustando sus parámetros de funcionamiento para que la inyección e ignición del tipo de combustible empleado en ese motor se realice en el momento más óptimo.

Pero este nuevo prototipo, que ha sido bautizado con el nombre de "motor omnívoro", utiliza un conjunto de sensores que se encargan de determinar las propiedades químicas y de ionización del carburante, o mezcla, utilizado, al tiempo que monitorizan los parámetros de la combustión que tiene lugar en el interior del motor.

Si estos sensores determinan que el motor no está funcionando con la eficiencia máxima, el sistema de control se encarga de actuar, de manera automática, sobre los parámetros de inyección e ignición.

Todo un complejo sistema que tiene por objetivo final adaptar el motor al tipo de combustible presente en cada momento en el depósito, optimizando su conversión en energía mecánica de la manera más eficaz posible.

Dyna Marzo 2009 105