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RESUMEN

• �En este trabajo se propone un nuevo modelo 

de correlación lineal para opiniones negativas 

(Lineal Threshold with Negative opinions - LTN) 

basado en el modelo básico de correlación 

lineal (LT), para considerar el fenómeno de 

las opiniones negativas que pueden aparecer 

y propagarse en las redes sociales como un 

fenómeno viral. Complementariamente se 

muestran algunas propiedades del modelo LNT 

como la monotonicidad y la submodularidad. 

Con estas propiedades se propone un algoritmo 

cercano al Greedy con una relación de 1-1e para 

maximizar la influencia en el modelo LNT. Para 

superar la ineficiencia del algoritmo Greedy, se 

han utilizado en este trabajo tres algoritmos 

mejorados: el algoritmo Nuevo Greedy para LNT, 

el algoritmo CELF para LNT y el algoritmo Mixed 

Greedy para LNT. Los resultados experimentales 

con dos series de datos mostraron que la 

extensión de influencia calculada con estos 

algoritmos era similar a la de los algoritmos 

comparativos pero siendo mucho más rápidos 

que estos algoritmos comparativos.

• �Keywords: marketing viral, maximización de la 

influencia, redes sociales, opiniones negativas, 

modelo LTN.

ABSTRACT
In viral marketing, considering the phenomenon that nega-

tive opinions may emerge and propagate in social networks, 
based on the fundamental linear threshold model (LT), a new 
model – linear threshold model with negative opinions (LTN) 
was proposed in this study. Subsequently, some properties of 
the LTN model, such as monotonicity and submodularity have 
been shown. With these properties, a greedy approximate al-
gorithm with a ratio of (1-1/e) for influence maximization on 
the LTN model was proposed. To overcome the inefficiency of 
the greedy algorithm, three improved algorithms—LTN_New-
Greedy (NewGreedy algorithm on LTN), LTN_CELF(CELF 
algorithm on LTN) and LTN_MixedGreedy (MixedGreedy 
algorithm on LTN)  have been provided in this work. The ex-
perimental results on two synthetic datasets showed that the 
influence spread of these improved algorithms was close to 
that of those benchmark algorithms, but they were faster than 
those benchmark algorithms.

Keywords: Viral marketing, Influence maximization, So-
cial network, Negative opinions, LTN model.

1. INTRODUCTION 
Based on social influence among an individual’s circles of 

friends, families and so on, viral marketing is believed to be an 
effective marketing strategy. With the increasing popularity of 
large-scale social networking sites, such as Facebook, Twitter 
and so on, viral marketing has more potential than ever before. 
Two key problems that would enable such large-scale online 
viral marketing are modeling influence propagation and influ-
ence maximization. The literatures regarding these two prob-
lems is extensive, but most of the previous works ignore an 
important fact that we often experience in the real word. That 
is, not only will the positive opinions propagate in the net-
work, but also the negative opinions. Taking the phenomenon 
into consideration, Chen et al. [3] and Nazemiam and Taghi-
yareh [20], proposed the extended influence propagation mod-
els based on the fundamental independent cascade model (IC), 
and proposed algorithms for influence maximization based on 
their models. In this paper, an extension of the LT model that 
incorporates the propagation of negative opinions named LTN 
was proposed. The new model maintains some nice proper-
ties, such as monotonicity and submodularity, which allows 
an approximate greedy algorithm for influence maximization 
with a ratio of (1-1/e) . To improve the efficiency of the greedy 
algorithm, some improved algorithms have been proposed too.
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The remainder of the paper is organized as follows: sec-
tion 2 surveys related work; section 3 presents the LTN model 
and its properties; section 4 details greedy algorithm and our 
improved algorithms for influence maximization based on the 
LTN model. We report a performance evaluation in section 5. 
Finally, we offer conclusions in section 6.

2. RELATED WORK
In this section, we first detailed the related work of the dif-

fusion model of influence and influence maximization, then 
we listed the notations used in this paper.

2.1 DIFFUSION MODEL OF INFLUENCE
In [25], a SEIR model was proposed to describe epidemic 

of the virus on the online social network. Hower, the most 
fundamental influence models in the literature that capture the 
underlying dynamics of the diffusion process are the LT model 
and the IC model. The LT model was proposed by Granovet-
ter et al. [1] and generalized by Watts et al. [2]. In this model, 
at any time step, a node is either active or inactive. Once a 
node is activated in a time step, it will remain active forever 
in the whole propagation. In the LT model, the sum of incom-
ing edge weights on any node is assumed to be at most 1 and 
every node chooses an active threshold uniformly at random 
from [0,1]. At any time step, if the sum of incoming influence 

(edge weights) from the active neighbors of an inactive node 
exceeds its threshold, it becomes active.

However, the LT model ignores the propagation of the 
negative opinions in the network. Incorporating the negative 
opinions, based on the IC model, Chen et al. [3] proposed the 
IC-N model and MIA-N algorithm for influence maximiza-
tion in IC-N. Similar to Chen et al. [3], Nazemian et al. [20] 
proposed an extended model ICPN with positive and negative 
WOM (word of mouth) based on the IC model, and proposed 
a greedy algorithm with approximation ratio of (1-1/e). Simi-
lar to the IC-N model, in this paper, based on the LT model, 
we propose the LTN model in this work, and the model will be 
detailed in section 3.

2.2 INFLUENCE MAXIMIZATION
Influence maximization is the problem of finding a small 

subset of nodes (seed nodes) in a social network that could 
maximize the spread of influence. Domingos and Richardson 
[4] and Richardson and Domingos were the first to study it 
as an algorithmic problem. Their methods are probabilistic. 
Kempe et al. [6] were the first to formulate it as a discrete 
optimization problem. The problem under the IC model and 
LT model was proved to be NP-hard, and a general greedy 
algorithm (KK_Greedy) with an approximation ratio of 1-1/e 
was proposed [6]. Due to the inefficiency of the KK_Greedy, 
considerable work has been done to improve its efficiency 
[7-17]. Lu et al. [18] studied the complexity of the influ-

Terms Desecription

S Seed node set (in algorithm1, algorithm2, algorithm3, algorithm4)

K The size of seed node set (in algorithm1, algorithm2, algorithm3, algorithm4)

getPosInfluenceSet(G,S,q) A function which returns the positive influenced node set of S in G under the quality factor q (in 
algorithm1, algorithm 3, algorithm 4)

σG(S,q) The size of the positive influenced set of the seed set S in G under the quality factor q (in section 
3.1)

FGi(S) The reachable set from S in Gi  (in section 4.2.1)

MG(G,S,v) MG(G,S,v)=|getInfluenceSet(G,S+{v})- getInfluenceSet (G,S)| (in algorithm2, algorithm4)

Gi=(Vi,Ei) The random graph that we get by running a random live edge selection process on G in iteration i 
(in algorithm2, algorithm4)

S
iG ( S

iV , S
iE ) The induced graph from Gi ,where S

iV =Vi\ FGi(S), S
iE ={(u,v)|u,v∈  S

iV ,(u,v) ∈Ei } (in algorithm2,  
algorithm4)

SCCi The macro node that denotes the ith strong connected component in the induced graph S
iG  (in 

algorithm2, algorithm4)
sccCount The number of strong connected components in graph (in algorithm2, algorithm4)

u.mg1 The property of node u to denote the marginal gain of u for the current iteration (in algorithm2, 
algorithm4)

u.mg The property of node u to denote the expected marginal gain of u for all iterations (in algorithm2, 
algorithm4)

Q<u,u.mg,u.mgset,u.flag> A table for all candidate nodes. In Q, u.mgset is the marginal influenced set of node u for the 
current s, that is, u.mgset = getInfluenceSet(g,S+{u})-getInfluenceSet(g,S), u.mg= |u.mgset|, and 

u.flag is the number of iteration when u.mg was last updated. (in algorithm3, algorithm4)
Table 1 Notations
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ence maximization problem in deterministic linear threshold 
model, and showed that the exact computation of the exact 
computation of the influence given a seed set can be solved in 
polynomial time.Bharathi et al. have studied the competitive 
influence diffusion with an extension of the IC model [19]. 
The algorithmic perspective of the negative opinions’ diffu-
sion has been discussed [3,20].Their work is based on an ex-
tended version of the IC model, while our work is based on an 
extended model of the LT model.

2.3 NOTATIONS
For ease of reading, we list the notations used in this paper 

in Table 1.

3.THE LTN MODEL AND ITS PROPERTIES
In this section, we first introduce the LT model and IC 

model, then propose the LTN model. Finally, we will provide 
some useful properties of  LTN.

3.1 LT MODEL
In our work, social network is modeled as a directed graph 

G= (V, E), where V and E are the node set and edge set, re-
spectively. Every u ∈ V denotes an individual, and a directed 
edge (u,v) ∈E represents the influence from u to v, and the 
volume of the influence is denoted by the edge weight of (u,v).

LT model(Linear threshold model) is a simple version of 
threshold model. In the LTN model, every node has two pos-
sible states, namely,active and inactive. In some situations, 
when node v adopts a new product or adopts a new technol-
ogy, the node is active. On the other hand, it is inactive. In LT 
model, once the node is active, its state will never change. So, 
the LT model is progressive.In this model, each node v∈V 
has a nonnegative weight w

uv
. For every u∈Nin(v), ( )

1
in

uv
u N v

W
∈

≤∑ .For 
every node v in V, it has a personal threshold value θ. 

 
Given 

these thresholds and an initial set S of active nodes (seed set), 
the diffusion process unfolds deterministically in a sequence 
of steps. At the time step t, each node which was active at 
time t-1 automatically remains active. Each node v that was 
inactive at time t-1 becomes active at time t if and only if  

( ),u S

.
in

uv
u N v

W vq
∈ ∈

≥∑ . Intuitively then, the edge weight represents the ex-
tent to which v is influenced by u, and the threshold represents 
the personal tendency of v to adopt  a new technology when 
its in-neighbor do.

Let S is the given seed set, S
inactive

 is the set of nodes whose 
state is inactive and S

new
 is the set of new active nodes in the 

current time step. The propagation of the LT model is de-
scribed below.

S
inactive

=V-S; S
new

=S;
While |S

new
|>0  {

    S
new

={}
For each node v in S

inactive
 do {

      If  
, ( )in

uv
u S u N v

W
∈ ∈

∑ ≥v.θ{

          S= S+{v}
S

new
= S

new
+{v}

S
inactive

= S
inactive

-{v}
 }  
}

3.2 IC MODEL
Inspired by the research on interacting particle systems, 

the indepedent cascade model (IC) of diffusion was studied 
widely in the field of influence maximization. Same to the LT 
model, in the IC model, a node has two possible states, active 
and inactive. In the IC model, each new active node  has a sin-
gle chance to activate  each of its inactive out-neighbor node.  
Moreover, the probability that a node is activated by a new 
active in-neighobr is indepedent of the set of neighbors who 
have attempted to active it in the past. Once again, starting 
with an initial seed set S, the propagation unfolds in a series of 
steps.  At step t, any node u who has just become active tries to 
activate each of its inactive out-neighbors v. Then, at the time 
step t+1, v will be active with probability p

u,v
.  Whether or not 

v becomes active, u will never activate v throught the rest of 
the diffusion process.

3.3 LTN MODEL
In real world, when we receive some products and ser-

vices, both positive opinions and negative opinions may 
emerge and propagate. However, in the LT model, only posi-
tive opinions have been taken into account. Therefore, when 
studying the influence maximization problem, it shoule be 
important to incorporate the conatgion of negative opinions 
into the LT model. So, taking into account of the negative 
opinions, a new threshold model LTN is proposed. In the 
LTN model, when the node is inactive, it is in neutral state. 
When a neutral node is influenced by positive opinions, it 
will be in positive state. On the contrary, if a node is in-
fluenced by negative opinions, the node will be in negative 
state.  Both negative and positive are active states.  Same to 
the LT model, the LTN model is progressive too. That is , if 
a node is in positive or negative state, it will never be in neu-
tral state. Similar to the LT model, in the LTN model, every 
node has threshold. However, in LTN model, a neutral node 
may be influenced by nagative opinions or positive opinions. 
So, every node in the LTN model has two thresholds, θ

N
 and 

θ
P
. The former is the threshold for its negative in-neighbors, 

and the latter is the threshold for its positive in-neighbors. 
As shown by Rozin and Royzman [21], there is negative bias 
in social psychology. To match this phenomenon, in the LTN 
model, θ

N
 is not greater than θ

P 
(θ

N
 ,θ

P
∈[0,1]). A discrete time 

step is used to model the dynamic change in the network. 
The model has a parameter q (q∈[0,1]) called quality factor, 
which is the probability that a neutral node switches to posi-
tive when it is activated by its positive in-neighbor nodes. 
For an initial seed set S, at the beginning, t= 0, all nodes 
in S are positive and all nodes in V\S are neutral. At time 
step t, for a neutral node v, PA

t
(v) ⊆ Nin(v) is the positive 

in-neighbor set of v, and NA
t
(v) ⊆ Nin(v) denotes the nega-

tive in-neighbor set of v. If 
( )t

uv
u NA v

W
∈
∑ ≥v.θ

N
, v will be negative, 

otherwise, if ( )t

uv
u PA v

W
∈
∑ ≥v.θ

P
, v will be activated by its positive 

in-neighbous, and it will be positive with probability q, and 
will be negative with probability 1-q. When there are no new 
active nodes in a time step, the activation process will stop. 

Due to the incorporation of the propagation of negative 
opinions,in essence, the LTN model is similar to the IC-N 
model proposed in [3]. However, the IC-N model is an exten-
sion of the IC model, the LTN model is an extension of the 
LT model.
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Let S is the given seed set, S
N
 is the set of nodes whose 

state is negative, S
P
 is the set of nodes whose state is positive, 

S
inactive

 is the set of nodes whose state is neutral  and S
new

 is the 
set of new active nodes in the current time step. The propaga-
tion of LTN model is described below.

S
N
={};  S

P
=S; S

inactive
=V-S;  S

new
=S;

While | S
new

 |>0 {
S

new
={}

For each node v in S
inactive

 do {
      If  

( )t

uv
u NA v

W
∈
∑ ≥v.θ

N  
{

          S
N
= S

N
+{v}

          S
new

= S
new

+{v}
S

inactive
= S

inactive
-{v}  }

      Else  if  ( )t

uv
u PA v

W
∈
∑ ≥v.θ

P  
{

          S
P
= S

P
+{v}  with probability q

S
N
= S

N
+{v}  with probability 1-q

S
new

= S
new

+{v}
S

inactive
= S

inactive
-{v}  }//if

}//For
}//While
Obviously, when q is 1, the LTN model is degraded into 

the LT model. The positive influence spread of a seed set S 
in G with quality factor q is the expected number of positive 
nodes in the graph when the activation process stops, and is 
denoted as σ

G
(S,q). In this work, we take positive influence 

spread as our objective since it is directly related to the ex-
pected revenue that the marketer would gain from the viral 
marketing. The influence maximization under the LTN model 
is described as follows.

For a given network G, size of seed set K and quality fac-
tor q, the influence maximization under the LTN model is to 
find a seed set S* of cardinality k, such that for any node set S 
of cardinality k, σ

G
(S*,q) ≥σ

G
(S,q) holds, in other words, S*=

,| |
arg max ( , )G
S V S k

S qs
⊆ = .

3.4 PROPERTIES OF THE LTN MODEL
Now, we discuss several important properties of σ

G
(S,q), 

which will be used in section 4. Firstly, we present a random 
selection process of  live edges.

Definition 1. Selection of live edges. Recall that each node 
v has an influence weight W

uv
≥0 from each of its in-neighbors 

u, subject to 
( )in

uv
u N v

W
∈
∑ ≤1. Suppose that v picks at most one of 

its incoming edges at random, selecting the edge from u with 
probability W

uv
*q , and selecting no edge with probability 

1-q* ( )in
uv

u N v

W
∈
∑ . The selected edge is declared to be ‘live’, and all 

other edges are ‘blocked’.
Theorem 1. For a given seed set S, the following two dis-

tributions over sets of nodes are the same:
(1) The distribution over positive sets obtained by running 

the LTN process starting from S;
(2) The distribution over sets reachable from S via live-

edge paths, under the random selection of live edge defined 
above.

Proof. We need to prove that reachability under our ran-
dom choice of live edges defines a process equivalent to that 
of the LTN model.

First, we consider the diffusion process of the LTN model. 
We define S

t 
to be the set of positive nodes at the end of itera-

tion t, for t = 0,1,2,…( S
0
 = S). If node v has not been activated 

by the end of iteration t, then the probability that it becomes 
active in iteration t+1 is equal to the chance that the influ-
ence weights in S

t
\S

t-1
 push it over its threshold, given that its 

threshold was not exceeded already; this probability is 1

1

\

*

1 *
t t

t

uv
u S S

uv
u S

q W

q W
−

−

∈

∈

−

∑
∑ .

Second, we consider the reachability of the random selec-
tion of live edge. We run the live edge process by revealing the 
identities of the live edges gradually as follows. We start with 
the seed set S

0
. For each node v with at least one edge from the 

set S
0
, we determine whether v’s live edge comes from S

0
. If so, 

then v is reachable; otherwise, we keep the source of v’s live 
edge unknown, subject to the condition that it comes from out-
side S

0
. Having now exposed a new set of reachable nodes S

1
’ in 

the first stage, we proceed to identify further reachable nodes by 
performing the same process on edges from S

2
’, S

3
’,…. If node 

v has not been determined to be reachable by the end of stage t, 
then the probability that it is determined to be reachable in stage 
t+1 is equal to the chance that its live edge comes from S

t
’\S

t-1
’, 

given that its live edge has not come from the earlier sets. So, 
the probability is 1

1

\

*

1 *
t t

t

uv
u S S

uv
u S

q W

q W
−

−

∈

∈

−

∑
∑ , which is same as in the LTN model.

Thus, by induction over these stages, we see that the live 
edge process produces the same distribution over positive sets 
as the LTN model.

Theorem 2. For any arbitrary instance of the LTN model, 
if the quality parameter q is fixed, for the seed set S, the posi-
tive influence spread σ

G
(S,q) is monotone, submodular and 

σ
G
(φ,q)=0.
A set function on vertices of G=(V,E) is a function f: 2V→R 

. Set function f is monotone, if f(S) ≤f(T) for all S ⊆ T, and it 
is submodular if f(S∪{u})-f(S)≥f(T∪{u})-f(T) for S ⊆ T and 
u∈V\T.

Proof. (1) Monotone. When S is φ, there are no positive 
nodes at the beginning of the activation process, no neutral 
nodes will be influenced by positive nodes and new positive 
nodes will never come into being. So, σ

G
(φ,q)=0. Obviously, 

when q is fixed, σ
G
(S,q) is monotone. Because, when the new 

node v∉S becomes positive, it will influence its neutral out-
neighbour nodes, and the probability of these nodes becoming 
positive will be increased. That is, σ

G
(S+{v},q) ≥σ

G
(S,q).

(2)Submodular. To establish this result, we should consid-
er the expression σ

G
(S∪{u},q)-σ

G
(S,q). In other words, what 

increase do we get in the expected number of overall positive 
nodes when we add v to the seed set S. It is difficult to analyze 
directly. Our proof deals with the difficulty by considering the 
equivalent live edge selection process with the LTN model. 
For a fixed outcome X of live edge selection, R(v,X) denotes 
the nodes that can be reached from v on a path consisting en-
tirely of live edges. 

First, we give the proof of the submodularity of σ
X
(S,q). 

Suppose, S ⊆ T ⊆ V, σ
X
(S∪{v},q)-σ

X
(S,q)= |R(v,X)\ ( , )

u S
R u X

∈


|≥|R(v,X)\ ( , )
u T

R u X
∈
 |= σ

X
(T∪{u},q)-σ

X
(T,q), soσ

X
(S,q) is 

submodular.
Then, we consider the positive influence spreadσ

G
(S,q). 

We have,

(1)

In (1), prob(X) is the probability of X in its probability 
space. From (1) ,we know that σ

G
(S,q) is a non-negative linear 

combination of σ
X
(S,q). σ

X
(S,q) is submodular, so, σ

G
(S,q) is 

submodular too.
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Theorem 3. The positive influence maximization problem 
is NP-hard for the LTN model.

Proof. For the influence maximization of the LT model, 
the proof of its difficulty is given in Kempe et al. [6]. Since 
the LT model is a special case of the LTN model when q is 
1, the positive influence maximization for the LTN model is 
NP-hard too.

4. ALGORITHMS FOR INFLUENCE MAXIMIZATION 
UNDER THE LTN MODEL

With theorem 2 and the work of Kempe et al. [6], for the 
influence maximization under the LTN model, we can get a 
simple approximate KK-greedy algorithm with a ratio1-1/e.

4.1 KK-GREEDY ALGORITHM
KK-greedy algorithm is described in algorithm 1. The al-

gorithm builds the initial seed set one node at a time, always 
greedily choosing the node with the largest marginal gain in 
influence.

Algorithm 1 kk_greedy
Input: Social network G, Size of seed set K, Quality fac-

tor q
Output: Seed set S
 S=φ; 
While |S|<K do {
u=
S=S∪{u}
}
In KK-Greedy, getPosInfluenceSet(G,S,q) is used to get 

the positive node set by S in G. The most major limitation of 
KK-Greedy is its inefficiency. The inefficiency is two-fold: 

(1) The computation of getPosInfluenceSet(G,S,q) is com-
putationally expensive with Monte Carlo simulation;

(2) There are too many candidate nodes needing to be ex-
amined by computing their marginal gain of influence.

4.2 IMPROVED ALGORITHMS FOR KK-GREEDY 
ALGORITHM

In recent years, considerable work has been done to im-
prove the efficiency of KK-Greedy algorithm. To address the 
first issue, a lot of excellent algorithms have been proposed, 
such as NewGreedy [8] , and so on. To tackle the second issue, 
CELF [11] and CELF++ [12] have been proposed.

4.2.1 Improving the efficiency of influence function
As we know, the evaluation of the influence spread by 

Monte Carlo simulation is very inefficient. Based on theorem 
1, we propose a new method to evaluate the influence spread, 
which is similar to the method of NewGreedy [8]. Similar to 
Monte Carlo simulation, we select an integer R as simulation 
times. In iteration i, we run the random live edge selection 
process on G, and get a graph G

i
. Suppose, F

Gi
(S) is the reach-

able set from S in G
i
, then, we have,

(2)

Like KK-Greedy, for the current seed set S, in each itera-

tion, from all nodes in V\S, we greedily choose the node v 
with the maximal value of |getPosInfluenceSet(G,S+{v},q)- 
getPosInfluenceSet (G,S,q)|, and add it to S. For simplicity, 
MG(G,S,v,q) is used to denote the expression | getPosInflu-
enceSet (G,S+{v},q)- getPosInfluenceSet (G,S,q)|, F

G
 (S) is 

the reachable set from node set S in graph G. 
For every graph G

i
=(V

i
,E

i
) obtained from the random live 

edge process, with the concept strong connected component 
in graph theory, we may reduce the computational complexity 
of MG(G

i
,S,v,q). With the concept of reachability and strong 

connected component, we know that, for a strong connected 
component SCC

i 
in graph G and any two nodes u and v (u,v∈

SCC
i 
and u≠v), F

G
({u})= F

G
({v}). The main idea of comput-

ing MG(G
i
,S,v,q) is as follows.

(1) First, for the current seed set S ,we compute the reach-
able set F

Gi
(S). Then, for any node v in S∪F

Gi
(S), MG(G

i
, 

S,v)=0.
(2) Suppose, S

iV =V
i
\ F

Gi
(S), S

iE ={(u,v)|u,v∈ S
iV ,(u,v) ∈E

i
 }, 

then we can get the induced graph S
iG ( S

iV , S
iE ) from G

i
.

(3) Get all strong connected components from S
iG . From 

graph theory, we know that all nodes in a strong connected 
component have the same reachable set, therefore, we use a 
macro node to denote a strong connected component. Now, 
macro node SCC

i
 can be used to denote the strong connected 

component SCC
i
. If there is an edge in S

iG  from nodes in strong 
connected component SCC

i
 to SCC

j
, we will add an edge from 

macro node SCC
i
 to SCC

j
, thus, from induced graph S

iG ,we 
can get a macro graph S

iSCC .
(4) Compute the reachable set for every node in S

iG . Let, 
( )S

i
iSCC

F SCC  be the reachable set of macro node SCC
i
 in the mac-

ro graph S
iSCC . Then for any node v in S

iV , we have,

     (3)

Discussion. From the empirical work of social network, 
we know that there are a lot of certain-scale strong connected 
components in the graph. But, if this is not the case, the above 
method will be inefficient, and we will compute all reachable 
set for every node directly as NewGreedy [8]. So, in our algo-
rithm, we introduce a threshold θ, when the number of strong 
connected component sccCount is less than θ*| S

iV |, we will 
compute MG(G

i
,S,v) with (3), otherwise, we will compute 

MG(G
i
,S,v) directly. So, we have,

   
 (4)

In order to obtain all strong connected components from 
the graph, we adopt Tarjan’s algorithm [22], and its complex-
ity is O(m+n). Our algorithm LTN_NewGreedy is described 
in algorithm 2.

Algorithm2 LTN_NewGreedy
Input: Social network G, Size of seed set K, Quality factor 

q, threshold θ
Output: Seed set S
1: S=φ;
2:For v in V do {v.mg=0}
3:While |S|<K do
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{
   4: For i=1 to R do
     {
5:Based on the process of live edge selection, we get the 

random graph G
i

6:For the current seed set S, we compute the reachable set 
F

Gi
(S)
  	 7:Get the induced graph S

iG =( S
iV , S

iE )
  	 8:Get all strong connected components to SCCList
   	 9:Get the macro graph S

iSCC

   	 10:For every node v in Vi, we compute MG(G
i
,S,v) 

with formula (4), v.mg1= MG(G
i
,S,v)

   }//For
  11:Get the average marginal gain of node v for R itera-

tions, v.mg=(1/R)*
12:u= \

argmax( . )
v V S

v mg
∈

  13:S=S+{u}
}//While
Example. We consider the graph G

i
 shown in Fig. 1(a), where 

V
i
= {1,2,3,4,5,6,7,8,9,10}. We set S={1}. In line 6, we can get 

F
Gi

(S)= {1,2,3}; in line 7, we can get induced graph S
iG  shown 

in Fig. 1(b). In line 8, we can get strong connected components, 
SCC

1
= {4,5,6}, SCC

2
= {7}, SCC

3
= {8, 9, 10}, which is shown 

in Fig. 2. Suppose thresholdθ is 0.5, so, in line 9, we can get the 
macro graph S

iSCC , which is shown in Fig. 3 . And, get the reach-
able set of SCC

1
,SCC

2
 and SCC

3
, that is {SCC1,SCC2,SCC3}, 

{SCC2,SCC3} and {SCC3}. In line 10, we can get MG(G
i
,S,v) 

for all nodes in S
iG , that is, 1.mg1=2.mg1=3.mg1=0,4.

mg1=5.mg1=6.mg1=|SCC1|+|SCC2|+|SCC3|=3+1+3= 
7,7.mg1=|SCC2|+|SCC3|=1+3=4,8.mg1=9.mg1=10.
mg1=|SCC3|=3. 

In algorithm2, u.mg1 is used to store the marginal gain of 
u for the current iteration, and u.mg is used to get the expected 
marginal gain of u for all iterations. 

4.2.2 Reducing the number of calling influence function
From the algorithm KK-Greedy, we know that when we 

choose a new seed, any node in V\S as a candidate node would 
be examined by running influence function. So, it will reduce 
the efficiency of the algorithm. With the submodularity of in-
fluence function, CELF algorithm was proposed [11]. In my 
opinion, when a new seed u is selected, any node v in the mar-
ginal gain of influenced set should not be as a candidate node. 
Since v can be influenced by seed set S+{u}, all nodes that 
can be influenced by v can be influenced by seed set S+{u} 
too. So, if v will be chosen as the next seed, its marginal gain 
will be zero. Based on this idea, we proposed an improved 
algorithm LTN_CELF for CELF. 

In LTN_CELF, we maintain a table Q<u,u.
mg,mgset,u.flag> for all candidate nodes. In Q, u.mgset= 
getPosInfluenceSet(g,S+{u},q)-getPosInfluenceSet(g,S,q), 
u.mg= |u.mgset|, and u.flag is the number of iteration when 
u.mg was last updated. In our algorithm, when a new seed u is 
chosen, any nodes in u.mgset will be removed from Q, which 
is different from algorithm CELF. LTN_CELF is detailed in 
Algorithm3.

Algorithm3 LTN_CELF _Greedy
Input: Social network G, Size of seed set K, Quality fac-

tor q
Output: Seed set S
1: S=φ; Q=φ;
2:For each v in V do {
3:    u.mgset=getPosInfluenceSet(G,{v},q)
4:    u.mg=|u.mgset|
5:    u.flag=0  
6:    add u to Q by u.mg in descending order    }//For
7:While |S|<k  and |Q|>0 do  {
8:    u=Q[top]
9:    if u.flag==|S| then  {
10:    S=S+{u}
11:    Q=Q-u.mgset  }

                                                      (a) graph Gi                                                                                            (b)induced graph 
S
iG  (S={1})

Fig.1. An example of graph Gi and its induced graph

Fig.2. All strong connected components in 
S
iG

Fig.3. Macro graph 
S
iSCC
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12:  Else  {
13:    u.mgset= getPosInfluenceSet (G,S+{v},q)- getPosIn-

fluenceSet (G,S,q)
14:    u.mg=|u.mgset|
15:    u.flag=|S|
16:    Resort Q by u.mg in descending order   }
17:}//While

4.2.3 A mixed greedy algorithm for influence 
maximization of the LTN model

To improve the efficiency of influence function, an efficient 
algorithm LTN_NewGreedy is proposed in this study. To re-
duce the number of calling influence function, an improved al-
gorithm LTN_CELF for algorithm CELF is proposed. Based on 
the idea of MixedGreedy [8], algorithm LTN_MixedGreedy is 
proposed. In the first iteration, the method in LTN_NewGreedy 
is used to get u.mg for all u in V, then, the method in LTN_
CELF is used to reduce the times of calling influence function. 
Algorithm LTN_MixedGreedy is described in algorithm 4.

Same to algorithm LTN_CELF, the algorithm maintains 
a table Q<u,u.mg1,u.mg, u.mgset,u.flag> for every node 
u in V. In Q, u.mgset = getPosInfluenceSet(g,S+{u},q)-
getPosInfluenceSet(g,S,q), u.mg1=|u.mgset|, and u.mg is the 
average marginal gain of node u.

Algorithm4 LTN_MixedGreedy
Input: Social network G, Size of seed set K, Quality factor 

q, threshold θ
Output: Seed set S
/* initialise */
1:S=φ;Q=φ;
2:For u in V do {
3:   u.mg1=0; u.mg=0; u.mgset={};u.flag=0;
4:   Add u to Q     }
/* get u.mg for all u in V  with the method used in algo-

rithm LTN_NewGreedy*/
5:For v in V do {
6:  For i=1 to R do:{
7:     Get MG(G

i
,S,v) with formula (4), v.mg1= MG(G

i
,S,v) 

}//for

8:  Get the average marginal gain of node v for R itera-
tions, v.mg=(1/R)*

9:}//for 
10:Resort Q by v.mg in descending order
/*Get the seed set with the method used in algorithm LTN_

CELF_Greedy
11:While |S|<k  and |Q|>0 do {
12:   u=Q[top]
13:   if u.flag==|S| then {
14:     S=S+{u}
15:     Q=Q-u.mgset  }
16:  Else {
17:     u.mgset= getPosInfluenceSet (G,S+{v},q)- get-

PosInfluenceSet (G,S,q)
18:     u.mg=|u.mgset|
19:     u.flag=|S|
20:     Resort Q by u.mg in descending order   }
21:} //While
As described above, in lien 1-4, the algorithm initialize 

<u,u.mg1,u.mg, u.mgset,u.flag> for every node u in V.Then 
in line 5-9, the algorithm gets the average marginal gain for 
every node v in V with the method employed in altorithm 
LTN_NewGreedy. Comparing with algorithm LTN_CELF, the 
computation of v.mg with the same method used in algorithm 
LTN_NewGreedy.Then, in line 11-21, with the method used in 
algorithm LTN_CELF, the algorithm can get the seed set. 

5. EXPERIMENTS
We implement algorithms NewGreedy, LTN_New-

Greedy, CELF, LTN_CELF_Greedy, MixedGreedy, LTN_
MixedGreedy, and conduct them on two real-world networks. 
We are interested in comparing both the influence spread and 
the running time of these algorithms. 

5.1 DATASET
To evaluate the algorithms proposed in this work, two real-

world datasets Epinions and Slashdot have been used. The two 

Table 2 Statics of datasets

id dataset nodes edges Average clustering 
coefficient Number of  SCC

1 Epinions 75,879 508,837 0.1378 42176

2 Slashdot 82,168 948,464 0.0603 10559

                                               (a)Epinions                                                                                                                 (b) Slashdot

Fig. 4 Influence spread vs. q on on Epinions and Slashdot (k=50)
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datasets were both collected from Stanford Large Network 
Dataset Collection (http://snap.stanford.edu /data/index.html).  
Epinions is a who-trust-whom social network (http://www.
epinions.com). All the trust relationships interact and form the 
web of trust. The dateset Epinions was cited in [23]. Slashdot 
is a technology-related news website know for its specific user 
community. The dataset Slashdot contains friend/foe links be-
tween the users of  Slashdot.  The dataset Slashdot was cited 
in [24]. Basic statistics about these two networks are given in 
Table 2. For the weight of every edge, firstly, we assign it a 
random value in [0,1], then, we normalize it by w

ij
=w

ij
/ ij

i

W∑
.For the algorithm LTN_NewGreedy and LTN_MixedGreedy, 
the parameter θ is 0.5. In all experiments, the number of simu-
lations R is 10000. The experiments are runing on a desktop 

computer with I5 2400S and 4G memory. 

5.2 EXPERIMENTAL RESULTS
5.2.1 Quality factor on influence spread
First, we run algorithm LTN_NewGreedy,LTN_CELF 

and LTN_MixedGreedy on Epinions and Slashdot to get a 
50-node seed set, with the quality factor q from 0.5 to 1.The 
results of this experiment are shown in Fig. 4. From Fig. 4, we 
can see that, when q increases, the influence spread increases 
quickly. The reason is that, if the quality of the product drops, 
the negative opinion would be more dominant. Therefore, the 
result suggests that maintaining a high product quality is very 
important in achieving a high influence spread. 

5.2.2 Positive influence spread and running time on two 
datasets

In order to evaluate the performance of these algorithms, we 
run algorithms NewGreedy, LTN_NewGreedy, CELF, LTN_

CELF_Greedy, MixedGreedy, LTN_MixedGreedy on Epinions 
and Slashdot. In our experiments, we set q=0.8. The influence 
spread of these algorithms on Epinions and Slashdot are shown 
in Fig. 5. And the running time of these algorithms on data1 and 
data2 are shown in Fig. 6.

As for the influence spread, from Fig. 5, we can see that 
the influence spread of these algorithms is matching. As for 
the running time, from Fig. 6, we can see that, algorithm 
LTN_CELF is faster than CELF; algorithm LTN_NewGreedy 
is faster than NewGreedy; algorithm LTN_MixedGreedy is 
faster than MixedGreedy. These results are expected. In these 
algorithms, LTN_MixedGreedy combines all advantages of 
LTN_CELF and LTN_NewGreedy, and it has the highest ef-
ficiency. In summary, in our experiments, LTN_MixedGreedy 

combines all advantages of LTN_CELF and LTN_New-
Greedy, and has the highest efficiency in all algorithms for 
influence maximization.

    

6. CONCLUSION
Incorporating the propagation of negative opinions in viral 

marketing, based on the LT model, with a parameter quality 
factor q, we propose an extended model LTN for the LT model. 
For the LTN model, we propose some good properties, such as 
monotonicity and submodularity. As for the influence maxi-
mization of the LTN model, we give a simple approximate al-
gorithm KK-Greedy with a ratio of (1-1/e). To improve the ef-
ficiency of the influence function getPosInfluenceSet(G,S,q), 
with the strong connected components in a graph, we propose 
an improved algorithm LTN_NewGreedy. To reduce the num-
ber of calling influence function, based on CELF algorithm, 

                                               (a)Epinions                                                                                                                 (b) Slashdot

Fig. 5 Influence spread vs. k on Epinions and Slashdot (q=0.8)

                                               (a)Epinions                                                                                                                 (b) Slashdot

Fig. 6 Running time vs. k on Epinions and Slashdot (q=0.8)

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://www.epinions.com
http://www.epinions.com
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