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RESUMEN
�Para mejorar el diseño de un controlador 
predictivo basado en un modelo para sistemas no 
lineales, se propone en este trabajo un modelo 
distribuido cooperativo (DMPC) por zonas afines 
(PWA) aplicado a un sistema compuesto por varios 
subsistemas restringidos. El esquema distribuido 
se aplica para ahorrar tiempo de cálculo de la 
solución. Para optimizar el rendimiento de todo 
el sistema, la cooperación tiene en cuenta la 
mayor parte de los objetivos de todo el sistema. 
El objetivo final, positivo e invariante, junto 
con el sistema en bucle cerrado se fijaron para 
garantizar la estabilidad. El problema óptimo 
de cada subsistema se transformó en una 
programación cuadrática mixta entera (MIQP) 
resuelto para obtener las acciones de control. 
El método propuesto descompone el problema 
de optimización de todo el sistema no lineal en 
varios MIQPs de menor dimensión de tal manera 
que el tiempo de cálculo se pueda reducirse 
drásticamente. Otra ventaja de la estrategia de 
optimización no lineal DMPC es que un problema 
no convexo podría ser sustituido por MIQPs 
finitos, pudiéndose obtener una aproximación 
al óptimo global en lugar de a un óptimo local. 
Finalmente se presenta un ejemplo numérico y la 
simulación de un sistema de cuatro tanques con el 
fin de poder evaluar el método propuesta.

• �Palabras clave: Sistema por zonas afines, 
control distribuido, control predictivo basado en 
modelo, programación cuadrática mixta entera, 
sistema de cuatro tanques.

ABSTRACT
To improve the model predictive controller design of 

nonlinear system, a cooperative distributed model predictive 
control (DMPC) method for a system comprised of several 
constrained piecewise affine (PWA) subsystems with coupled 
control information is proposed in this paper. Distributed 
scheme is applied for saving time of solving optimization. 
To improve the optimal performance of entire system, coop-
eration was promoted with consideration to a greater portion 
of the system-wide objective. The terminal positively invari-
ant set and cost of the entire closed-loop system were added 
to guarantee stability. The optimal problem of each subsys-
tem was converted to mixed-integer quadratic programming 
(MIQP) solving for obtaining control actions. This method de-
composed the optimization problem of a large-scale nonlinear 
system into several lower-dimension MIQPs such that solving 
time could be reduced dramatically. Another advantage of the 
DMPC strategy is non-convex nonlinear optimization could 
be replaced by finite MIQPs, and an approximate global opti-
mum could be obtained rather than a local optimum. Finally, 
a numerical example and a quadruple-tank simulation are pre-
sented in order to assess the proposed DMPC strategy.

Keywords: Piecewise affine system, distributed control, 
model predictive control, mixed integer quadratic program-
ming, quadruple-tank.

1. INTRODUCTION 
Model predictive control (MPC) research began with the 

motivation of using computer technology to improve the con-
trol performance of systems that were multi-variable and had 
constraints [1]. In general, MPC appeared as a centralized 
control strategy. Nevertheless, for large-scale systems, a cen-
tralized model predictive controller that accounts for all inter-
actions in the global system is either too complex or impracti-
cal. Typical examples of such systems are power networks, 
water networks, and urban traffic networks, among others. In 
order to overcome these shortcomings, decentralized and dis-
tributed control strategies have been developed in the MPC 
field [2]. 

DMPC is recognized as a highly practical control tech-
nology with high performance. It has been applied success-
fully to a water supply networks [3] and green-time control 
in urban traffic networks [4]. In a decentralized MPC, the 
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original single optimization problem is replaced by a num-
ber of smaller ones, which have fewer decision variants and 
are easier to be solved in parallel. If the interactions among 
the subsystems are important or not small, the conditions that 
guarantee closed-loop nominal stability are strict [5]. In some 
cases, even the nominal closed-loop system behavior under a 
decentralized MPC may be unstable [6]. With the motivation 
of dealing with information exchanges between subsystems, a 
distributed MPC has captured scholars’ attention. A commu-
nication-based DMPC scheme has been explored in the litera-
ture [7] and [8], where each subsystem’s controller minimizes 
a local cost function for obtaining control actions; however, 
states sometimes move towards a Nash equilibrium with such 
a scheme. From a game theoretic perspective, the Nash equi-
librium is a non-cooperative one, and is usually suboptimal in 
the Pareto sense [8]. In order to obtain improved optimized 
performance, a feasible cooperation-based model predictive 
control (FC-MPC) scheme has been developed in [9], [10], in 
which local objective functions of each subsystem have been 
modified to achieve system-wide control objectives. The FC-
MPC strategy has two obvious advantages. The first is that 
the converged solution of this method is close to the Pareto 
optimal solution, from which the best achievable performance 
can be obtained through a centralized model predictive con-
trol (CMPC); the second advantage is that FC-MPC can deal 
with heavy interactions of state and control. In [11], Stew-
art proposes a stabilizability condition of the linear FC-MPC 
strategy, and also provides guidance on how to partition the 
subsystems within the plant. In [12], a novel distributed non-
convex optimization algorithm, the unique feature of which is 
that no coordinating optimization is required, is proposed for 
a nonlinear FC-MPC. This algorithm makes each iterate fea-
sible and decreases the cost function. The convergence rate of 
the FC-MPC scheme has been investigated in [13], which re-
veals a strong connection between the weights, the strength of 
the coupling between subsystems, and the convergence rate. A 
singular value decomposition (SVD) framework for FC-MPC 
with highly coupled inputs was developed in [14], whose per-
formance is close to that of the CMPC and outperforms the 
FC-MPC. The SVD structure can be decomposed into several 
independent subsystems and the coupling effect of the input 
and state variables can be overcome effectively.

Most investigations of DMPC concentrate on linear mod-
els. A huge obstacle when developing these schemes for non-
linear models is the fact that non-convex nonlinear optimiza-
tion is hard to solve. Motivated by the above background, the 
work presented in this paper aims to contribute to the topic of 
distributed control of a coupled nonlinear system. Assume a 
plant comprised of several subsystems, and each subsystem is 
described by equation of:

   

(1)

It is well known that chemical plants, computer networks, 
and bio-systems are governed by very complex dynamics, so 
this class of system is common. Control is required to intercon-
nect between subsystems. Due to the increasing requirements 
of control performance, such a non-linear model is essential 
for controller design. However, when a non-linear model is 

supplied for designing a DMPC controller, the optimization 
problem requiring a solution is a non-linear programming one; 
in most cases this means it is non-convex, time-consuming, 
and also difficult to find a global optimal solution. While lin-
earization, a standard technique in the control community, is 
not always practical, an alternative approach is the PWA ap-
proximation, which has the ability to approximate non-linear 
functions with arbitrary precision. Given the above reasons, 
this work presents a DMPC scheme for constrained PWA 
subsystems. When approximating non-linear subsystems (1) 
with PWA models, the final optimization problem requiring 
a solution to obtain control actions is a mixed integer qua-
dratic programming (MIQP) problem instead of a nonlinear 
programming problem. This change has two benefits. Firstly, 
MIQP is a convex optimization, requiring finite quadratic pro-
gramming (QP) so an approximate global optimum can be ob-
tained; on the other hand, distributed strategy can effectively 
reduce the number of decision variables of each MIQP, and 
decrease the time for solving optimization.

The paper is organized as follows. In Section 2, the DMPC 
problem is introduced. Next, the result of this paper is con-
tained in Section 3. Section 4 reports the simulation results to 
corroborate our framework.

2. PROBLEM SETUP
In order to make this paper self-contained, some relevant 

definitions must be reviewed.  denote the field of 
real numbers, integers, and non-negative integers, respec-
tively. Let  denote the vector space of the n-dimensions 
real numbers. Let  denote the discrete time index. In-
tegers  denote the predictive horizon and the number 
of subsystem, respectively. We used  to denote the finite 
integers set . In particular,  denotes the in-
teger set . For given functions  and 

,  denotes the function . For a set 
 denotes the closure of .

In this paper, the plant we have considered is a class of 
a time-invariant discrete-time distributed system, and each 
subsystem has the PWA form, which can be obtained from 
the transformation of nonlinear sub-model (1) by suitable ap-
proximate method. To facilitate the exposition, we assumed 
the plant comprises only two subsystems, i.e. , and 
each system has multiple switching partitions. The analysis 
and result of more subsystems is similar. Consider the follow-
ing system:

	  

(2)

For convenience, we have used  to denote the state 
and input at a given time instant and  to denote the state at 
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the next time instant. Indexes in superscript indicate the parti-
tion of the switching dynamic, and those in subscript indicate 
which subsystem they belong to. There is a little difference on 
the coefficient matrix . The subscript is divided into two 
parts. The first integer is the indicator of the current subsys-
tem, and the second points out which subsystem the control 

 is derived from. Each partition is a polytope that has the 
following form:

where . For the  
and , which is state constraints of -subsystem. 

 is the switching index set of -th subsystem. When the ori-
gin of subsystem  is contained in partition , then  
is required to satisfy the continuity at point . The con-
straints of control are also polyhedral, namely:

The entire system is also PWA, but with more partitions, 
as the form of

 (3)

in which , 
, and .  is the switching 

index set of entire PWA system. The constraint set of the state 
and the inputs of the entire system are  and , respectively, 
which are also polytopes. 

 (4)
	

 (5)

And . 
Moreover, we assume that the origin belongs to .

The goal of this paper is to design a DMPC strategy in 
order to stabilize the entire system with guaranteed bounds of 
states and controls of each subsystem.

3. DISTRIBUTED MODEL PREDICTIVE CONTROL

3.1. COST FUNCTION
Due to the existence of control information coupling 

among subsystems, a cooperative algorithm was applied to 
guarantee the stability of the entire closed-loop system and 
to obtain a better optimal performance. Consequently, in this 
paper, we used the global cost function, which has the follow-
ing form:

 (6)

The stage function of -th subsystem, namely , is 
usually defined using quadratic forms:

 (7)

as is the terminal cost:
	

 (8)

where  are positive semi-definite ma-
trices and  are positive definite matrices.

As we have seen, the stage functions are defined for each 
subsystem, while the terminal cost is weighted on states of 
the entire system. The advantages for this are twofold. The 
most important advantage is to lower the conservative of lin-
ear matrix inequalities (LMI) which must be solved to obtain 
static control  and the terminal weighting matrix ; the 
other is convenient for adjusting the weighting coefficients of 
a subsystem’s states. The stage function of entire system can 
be reformed as:

	
 (9)

in which .

3.2. STATIC CONTROL LAW, TERMINAL COST AND 
CONSTRAINT SET

In order to guarantee the stability of the entire closed-loop 
system, terminal positively invariant sets , weighting  ma-
trix  and static control law  must be designed ac-
cording to entire system (3). Because of the switching charac-
teristics of the PWA model, the design method of  and  
that allow for arbitrary state switching from literature [15] was 
adopted.

Let  be a stabilizing static control gain for the 
entire system (3), then the static controller is:

 (10)

and let ; that is, the index set 
of partitions that contain the origin. Because  is a central-
ized terminal static control law, let  denote the control 
law of -th subsystem, namely, . Also, the entire 
system is piecewise linear in set , then a closed-
loop system in  with static controller (10) is: 

	
(11)

The terminal positively invariant set  of the entire sys-
tem (3) subject to (10), not unexpectedly, . 
The terminal cost function is defined as follows:

	

 (12)

A stability constraint of  and  can be solved by the 
LMIs as shown in [15]. The maximal positively invariant set 

 was calculated in the manner that iterated from  to infin-
ity in [15]. When practically applied, a reasonable approxima-
tion of  is usually chosen.
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3.3. CONVERSION OF OPTIMIZATION
With the static controller, terminal cost and constraint set 

described in the previous subsection, the distributed optimi-
zation problem of the -th subsystem is given by following 
Problem , 

 

(13)

It is inconvenient to predict future states by using the PWA 
model because of its switching characteristics. A mixed logic 
dynamic (MLD) model, which stems from [16] was intro-
duced to construct state update equations for the subsystems. 
For the -th subsystem, introduce logic variants  and auxil-
iary variable ,  as follows:

 (14)
	

 (15)

then, the MLD models of the subsystems are:

 (16)

Let , then the state up-
date equation of the -th subsystem can be reformed as:

 (17)

Some constraints of  are needed to guarantee equiv-
alence between model transformations. This optimization 
problem (13) of subsystem  can be written as a MIQP 
problem: 

 (18)

where .  is 
the control of the MLD model of subsystem , and  
represent, respectively, auxiliary logical and continuous vari-
ables over predictive horizon, i.e.

The matrices  in the cost function and 
 in the constraint of the optimization prob-

lem (18) are matrices with suitable dimensions. The inequali-
ties contain controls, states and terminal constraints and con-
straints that ensure equivalence between model transforma-
tions.

There are coupled variants both in the cost function and in 
the constraints of the optimization problem (18). When com-
puting the optimization problem of the -th subsystem at time 

, because  are unknown, it is replaced by 
; namely, the predicted  on the previous mo-

ment .
Due to the existence of logical variables, the optimization 

problem (18) is a MIQP, and can be solved using existing opti-
mization software, such as MOSEK, CPLEX, and MPT.

In order to ensure the recursive feasibility of the proposed 
DMPC, a warm start algorithm is a requisite. According to the 
optimum solution of problem (18) at time , this algorithm is 
used to construct a feasible solution for the next moment.

Algorithm 1:
Given  and the optimal solution 

, , at time , the 
warm start  is calculated according to the rules be-
low:

If , 
	 then . 

 are computed according to Formula (3). 

where . 
The function  represents the process of determining  ac-
cording to the state , as shown in Formula (14). Similarly, 
the function  represents Formula (15).

else , 

end if
Based on the solution of this optimization problem (18) for 

each subsystem at time , namely , new control actions 
are constructed as 

where . The control actions applied 
to the plant are:

 (19)

Remark 1: According to the content of subsection 3.3, it is 
necessary to point out that the coupling of control information 
appearing in the PWA subsystem, after the model transforma-
tion, is implicit in auxiliary variables; if there exists state cou-
pling, the method presented in this paper can also be applied.



Noviembre - Diciembre 2015 | Vol. 90 nº6 | 661/671 | Dyna | 665

artículo nnnnDistributed model predictive control for constrained piecewise affine system with control coupling
Guoqi Zhong, Zhiyuan Liu and Houhua Jing

Cod. 7740 | Tecnología de la instrumentación | 3311.02 Ingeniería de control

From the above description, a procedure of applying the 
DMPC method can be divided into two stages, namely offline 
computation and online optimization. The complete algorithm 
can be schematized as follows.

Algorithm 2:
Step 1. �Given the parameters , and 

then compute static control law , terminal 
weighting matrices   and terminal positively in-
variant set . 

Step 2. �Compute coefficient matrices in MIQP (18).
Step 3. �Given initial states , and choose an initial fea-

sible , then set .
Step 4. �Compute  by solving optimization problem 

(18) for all .
Step 5. �Compute control actions  according to For-

mula (19).
Step 6. �Transmit  to each interconnected subsystem 

, and then apply the control actions to all sub-
systems for obtaining the new states.

Step 7. �Construct a feasible solution according to Algo-
rithm 1. Set  and go to Step 4.

In Algorithm 2, Step 1 to 2 belong to the offline stage, 
while the other steps belong to online stage.

3.4. ANALYSIS
In general, the analysis of the MPC method is necessary 

from two aspects: feasibility and stability. Feasibility of the 
optimization problem means there exists one input profile at 
each instant, not necessarily optimal, satisfying the constraints 
and such that the value of cost function is bounded. Stabil-
ity means these control actions ensure the system works well. 
Due to the repeated solutions of the optimization problem 
given by (18), we need feasibility at each time . In the 
following, we provide a lemma on the feasibility of the opti-
mization problem at each moment.

Lemma 1: The feasibility of the open-loop optimal control 
problem (18) at time  implies its feasibility for all .

Proof: For the entire PWA system, the control ac-
tion  is said to be feasible at time  with 
state , if each  is a feasible solution for sub-
optimization problem (18). The proof is a recursive proce-
dure. First, assuming the sub-optimization problems (18) 
for  are feasible at the moment , then there ex-
ist  optimal sequences of controls at time , denoted as 

, . Then, a set of 
candidate feasible solutions at time  can be constructed 
according to Algorithm 1.  satisfies the constraints 
because of the positively invariance of terminal set , as 
illustrated in [15]. As a result of that,  satisfies vari-
ous constraints in optimization problem (13).  and 

 are generated in accordance with (14) (15), respec-
tively. Consequently, all constraints in optimization problem 
(18b) can be satisfied by . Finally,  is a 
feasible solution of optimization problem (18).

Besides Lemma 1, the initial feasibility of control action 
 is required to guarantee the feasibility of the optimiza-

tion problem at all times. The initial feasibility always can be 
achieved by choosing .

Remark 2: According to the equivalence of the PWA and 
MLD systems illustrated in [17], optimization problem (13) 
and (18) are also equivalent.

The following theorem, based on the feasibility of the op-
timization problem, ensures the stability of the entire closed-
loop system.

Theorem 1: Consider system (2) for a fixed , and 
suppose that the recursive feasibility of optimization problem 
(13) is satisfied; then the origin of the DMPC closed-loop sys-
tem is Lyapunov asymptotically stable.

Proof: Consider cost function

 (20)

as a candidate Lyapunov function, where 
. To prove the asymptotic stability 

of the entire closed-loop system, we need to prove two as-
pects: attractivity and stability.

Attractivity: By solving LMI listed in [15],  and 
 are obtained, which allow for arbitrary switching 

and according to this implies:

established in . From the optimization we know that 
for all 

can be obtained, then by convexity of function , 
we have 

	

The difference of  is 
	

Taking a limit to infinity on both terms, and by virtue of the 
positive definite nature of the cost function, it is derived that:

Then, the system converges to the equilibrium point in .

Stability: Since  is a quadratic function with re-
spect to , obviously, there exists a  
such that:

Let  be an instant such that , and let  denote 
the index of switching at instant . In the terminal set , the 
candidate Lyapunov function satisfies:
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It follows , where  is a 
-function. As , we have:

For , define , then 
. If , then 

. Depending on the Definition 4.1 in [18], the sta-
bility is proved.

4. ILLUSTRATIVE EXAMPLES
In order to verify the proposed method, a numerical simu-

lation  are presented in this section, whose equilibrium locates 
on a common boundary of multiple partitions; this example 
is used to illustrate the case in which state trajectories switch 
between partitions when states steer toward the equilibrium.

Consider a discrete-time state space model with two sub-
systems,

 (21)
	

 (22)

The regions of the four switch partitions are polytopes, and 
their math descriptions are as follows:

The constraints of control are . The 
control objective is to transfer the states to the origin. The 
constrained optimal control problems are solved with weight-
ing matrices  and initial states 

.
Because the origin is on the boundary of all switching par-

titions, the switching set is . The terminal 
matrix and static controller are:

The optimal closed-loop state and control trajectory for 
each subsystem with the proposed DMPC are depicted in Fig. 
1 and 2, respectively. The solid lines are the simulation results 
with the DMPC strategy presented in the previous section, 
and the dashed lines are the result with a CMPC strategy as 
a comparison. The values of logical variants with DMPC are 

Fig. 1: Closed-loop state response of CMPC(green line) and DMPC (blue 
line).

Fig. 2: The control trajectories of CMPC (green line) and DMPC (blue 
line).

Fig. 3: The trajectories of logical variants of the DMPC.
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indicated in Fig. 3. For comparison, the switching sequence 
with a CMPC is shown in Fig. 4.

The DMPC controllers are successful in stabilizing all 
states of subsystems, and keeping the constrained states and 
controls within their limits. As can be seen from the trajecto-
ries of the states, after 15 steps the state gets close to the origin. 
However, because the origin is on the boundary of partitions, 
the states are always jumped between different partitions.

A CMPC simulation of an entire PWA system has been 
applied to compare the performance of the DMPC proposed 
in Section 3. Both the system and control curves of the CMPC 
twist more than that of the DMPC. Comparing Fig. 3 and 4, 
the reason for this is that the entire PWA system has a greater 
number of switching partitions and the behavior of transfer-
ence of its states is consequently more complex.

When comparing calculation times, the DMPC has sig-
nificant advantages. On a PC with Inter Core i5-3210M CPU 
(2.50 GHz) and 8.00 GB DDR3-1600 memory, the average 
solving times for 30 steps with different predictive times are 
listed in Table 1.

DMPC      CMPC

0.0216 0.1007

0.0336 0.2997

0.0681 0.5967

Table 1: Comparing of Average Solving Time (Unit: s)

From Table I, with the increase of the predictive horizon, 
the total computation times show significant differences. The 
larger the predictive horizon is, the greater the difference is. 
In DMPC, the optimization problem of the entire system is 
decomposed into a number of smaller optimization problems, 
and each has fewer dimensions of decision variables. This 
leads to a significant decrease in the solving time.

5. APPLICATION TO QUADRUPLE-TANK SYSTEM
For deeply illustrating the detailed way to apply the 

DMPC proposed in the third section, it has been applied on 

a real quadruple-tank system in simulations. The complete 
design process of deploying the DMPC on a real nonlinear 
system is introduced. The quadruple-tank process is a typical 
minimum phase and a multi-variable system of interconnected 
tanks with nonlinear dynamics and is subject to state and input 
constraints [18]. This system can be used to verify complex 
advanced control and optimization algorithms, such as MPC, 
neural network control and fuzzy control. A real quadruple-
tank system is shown in Fig. 5 and its scheme is presented in 
Fig. 6. The plant is composed of four tanks and two pumps. 
The two manipulated variables are the input voltages to the 
pumps, and the two controlled variables are the water levels 
of the lower two tanks.

The complete design process includes three steps. First, a 
nonlinear model of the controlled system is decomposed into 
several nonlinear distributed subsystems with suitable dimen-
sions. Second, the subsystems are converted into PWA models 
by some approximate method and then are discretized. Final-
ly, our proposed DMPC can be applied on these discrete-time 
PWA sub-models. 

A nonlinear dynamic of quadruple-tank process can be 
modeled according to mass balance and Bernoulli’s law.

 

(23)

In Formula (23),  are the levels of water 
in tank  considered as states, and  are pump 
speeds, which are manipulated inputs. The physical mean-
ings and values of other parameters appearing in (23) are 
described in the following Table II, from [18]. The state 
and control constraints considered in the quadruple-tank 
model (23) are  and 

, respectively.

Fig. 4: The switching orders of the CMPC.

Fig. 5: The real quadruple-tank system.
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The entire quadruple-tank nonlinear model (23) can be di-
vided into two distributed subsystems. Subsystem 1 contains 
Tanks 1 and 3, and the other two tanks belong to subsystem 2, 
illustrated in Fig. 7. Namely: 

 (24)
	

 (25)

Only control information interacts with each other in the 
distributed subsystems. Let  and  
denote the states of subsystems, and let  de-
note the control input. 

Typically, the commonly used technique to design a con-
troller for a nonlinear system is linearization at a given equi-

librium. However, the approximate linear model is only ac-
curate in the neighborhood of the equilibrium; that accuracy 
is poor anywhere else. In the case of a quadruple-tank, a PWA 
model is used instead of a linear model to approximate the 
nonlinear equation (23). The advantage is that an approximate 
PWA model has higher accuracy.

Notice that the nonlinearity of a quadruple-tank system 
(23) only reflects on , so if a PWA approximation of 

 can be calculated, we can obtain the PWA equation of 
the entire quadruple-tank dynamic. Using the method origi-
nating from literature [19], a PWA approximation is solved 
as follows:

 (26)

Table 2: The Parameters of Quadruple-Tank

Value Unit Description

28 The cross-section of tank 1.

32 The cross-section of tank 2.

28 The cross-section of tank 3.

32 The cross-section of tank 4.

0.071 The cross-section of the outlet hole of tank 1.

0.057 The cross-section of the outlet hole of tank 2.

0.071 The cross-section of the outlet hole of tank 3.

0.057 The cross-section of the outlet hole of tank 4.

0.70 - The parameter of the three-way valve.

0.60 - The parameter of the three-way valve.

3.33 The flow coefficient of the pump 1.

3.35 The flow coefficient of the pump 2.

981 The acceleration of gravity.

Fig. 6: The scheme of the quadruple-tank system.

Fig. 7: The quadruple-tank process: two distributed subsystems
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where the parameters in (26) listed in Table 3. The reason 
only two region approximations were chosen in (26) is that 
fewer region approximations will reduce the complexity of 
the subsequent calculations, leading to fewer decision variants 
requiring solutions in the final MIQPs. Besides that, the ap-
proximation accuracy is also acceptable according to the com-
parison shown in Fig. 8. From that, the error between  
and its PWA approximation is small on interval  which 
is the constraint considered in quadruple-tank process exactly.

Substituting the PWA approximation equation (26) into 
nonlinear equations (24-25) yields continuous-time PWA de-

scription for quadruple-tank subsystems. Using zero-order 
hold discretization, two discrete-time PWA sub-models of 
quadruple-tank can be obtained as follows:

	  
The sample time we used is . Each subsystem has four 

switching partitions and the entire quadruple-tank model, 
which can be obtained via simple calculations according to 
foregoing method, has 16 partitions. The entire model is large 
and complicated and consequently not listed here.

The output equation of the entire system is: 

 (29)

The aim in this example is to design a distributed predictive 
controller to stabilize the quadruple-tank system and regulate 
the output  to a given set point . The steady 
state  and input  that tracks the set point can be determined 
using the solution of the quadratic programming listed in [20]. 

In this case, we need to design a tracking distributed pre-
dictive controller. The cost function we have adopted is:

 (30)

This cost function is different from (6). However, 
compared with the result in Section 3, only some minor 
changes are necessary to rebuild the MIQP. The initial 
state is . The setup 
parameters for the distributed predictive controller are: 

. The pre-
diction horizon has been taken as . The terminal matrix 
and static controller for the stability guarantee are listed be-
low. Because the equilibrium is located in the interior of one 
region, only one static controller is needed.

 (31)
	

	

Fig. 8:The comparison between  and its PWA approximation.

Table 3: The parameters of PWA approximation in (26)

Parameters Value

10.1850

5.0753

44.6396

94.3417

9.7271

1.00

30.00

(27)

(28)

(32)
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For a deep understanding of the DMPC proposed in this 
paper, a comparison between the DMPC and a nonlinear mod-
el predictive control (NMPC) originated from Chen’s work 
[21] was drawn simultaneously, which has been promoted as 
one of the most important contributions in the field. Chen pre-

sented a quasi-infinite horizon NMPC for nonlinear systems 
in [21], which guarantees asymptotic closed-loop stability. 
The simulation was run on MATLAB R2013a with an Inter 
Core i5-3210M CPU. The MIQP was solved using MOSEK 
7.0. The NMPC in paper [21] needs to solve a nonlinear pro-
gramming with nonlinear constraints, and fmincon function 
in optimization toolbox of MATLAB R2013a is suitable for 
carrying off it. The setup parameters of NMPC are the same 
with those used in the DMPC simulation.

The simulation results are presented in Fig. 9-12. In Fig. 
11, the time evolution of the output is presented, where the 
desired set point is illustrated with black dot-dashed lines and 
the response curves of DMPC and NMPC are depicted in blue 
solid lines and orange dashed lines, respectively. In Fig. 9, 
the time evolution of  is presented, and in Fig. 
10, the time evolution of control input  and  is exhib-
ited. In these figures, the blue solid lines and orange dashed 
lines denote the responses of DMPC and NMPC respectively. 
The solving time of these two methods is depicted in Fig. 12. 
The red and orange curves represent the time for solving the 
MIQPs of the two subsystems at each sample time, and the 
blue line indicates solving time of nonlinear programming. 
Notice that the curves of both states and controls fulfill the 
constraints we desired. From the comparison of the curves in 

Fig. 9: The trajectories of states of the quadruple-tank.

Fig. 10: The trajectories of controls of the quadruple-tank.

Fig. 11: The trajectories of outputs of the quadruple-tank.

Fig. 12: The solving time comparison between nonlinear MPC and DMPC.
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Fig. 9-12, the performance of NMPC is better than the per-
formance of DMPC during the dynamic process, while in the 
steady-state process, their performance is very close. In ad-
dition, the DMPC has a huge advantage on time-consuming. 
The reason is that non-convex optimization and nonlinear 
constraints of NMPC greatly increase the solving time. These 
two difficult issues are overcame by the DMPC presented in 
this article as expected. 

From this example, we can conclude that equilibrium of 
actual system is almost impossible to locate on a boundary of 
some partition. It means that only one partition contains the 
equilibrium in its interior. However, the equilibrium is consid-
ered as locating on the boundary, if it is very close to a bound-
ary, in order to avoid oscillation of state trajectories.

5. CONCLUSION
In this work, a DMPC strategy has been presented for a 

system whose components consist of several nominal PWA 
models. To reduce the solving time of optimizations, a cooper-
ative distributed framework was applied. For the convenience 

of the stability analysis, terminal inequality constraint set and 
terminal cost were employed. A warm start algorithm was 
used to achieve the recursive feasibility. The advantage of the 
DMPC strategy is that an approximation global optimum can 
be obtained, because the MIQP was solved through comput-
ing finite QPs. The controller has been applied to a numerical 
example and a quadruple-tank plant to prove the effectiveness 
of different situations. It should be noted that the stronger the 
non-linearity subsystem, the more partitions a PWA approxi-
mation needs, which leads to a more complex MIQP problem. 
The time for solving MIQP problems increased exponentially 
with the growth of the PWA partitions. In the practical appli-
cation of the method proposed in this article, compromise be-
tween PWA approximation and optimized performance should 
be considered.
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