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Conditional entropy-based feature 
selection for fault detection in 
analog circuits
Selección de características basadas en entropía condicional para la detección de 
averías en circuitos analógicos

ABSTRACT
To detect parametric faults in analog circuits, a novel support 

vector machine (SVM)-based fault detection approach, which was 
integrated with conditional entropy-based feature selection al-
gorithm, was proposed in this study. In preventing the significant 
loss of the effective features, a sampling process was executed 
with a significantly higher frequency. The side effect of this pro-
cess showed that raw observation vectors were of extremely high 
dimensions. To reduce computation overhead, the feature selec-
tion algorithm based on conditional entropy was put forward to 
compress raw observation vectors into new observation vectors. 
The conditional entropy was used to update the conditional prob-
ability of a fault based on new fault information, which eventu-
ally made the fault probability more clear. By applying the pro-
posed feature selection algorithm, it can compress raw data more 

wisely, and maximize the information in choosing the dimensions 
to be included in the new observation vectors. Simulation results 
showed that the fault detection approach presented in the study 
could classify non-linear feature vector space of the analog cir-
cuits. and achieved a lower misclassification rate than other cur-
rent methods (i.e., equidistant method and conditional probabili-
ty-based method). 

Keywords: Fault detection, Conditional entropy, Support vec-
tor machine (SVM), Classification.

1. INTRODUCTION 
In mixed integrated circuits (ICs) and systems on a chip (SOCs), 

the scales of digital circuits are usually larger than those of analog 
circuits. However, fault detection of analog circuits is more diffi-
cult because of the circuits’ continuous signals in input ports and 
output ports, in fault model, in tolerances of analog components, 
and in other parts.

In analog circuits, a fault means any change in the value of a 
component. It can cause deviation from the normal behavior of 
the circuit under test (CUT). A parametric fault refers to a toler-
able deviation of an analog system from the normal specifications 
[1]; it negatively affects the system’s performance but does not 
result in system termination [2]. Fault detection is performed to 
discover deviations in a circuit. Fault detection for analog circuits 
is difficult, especially for parametric faults. Parametric faults devi-
ate very subtle. Such subtlety of parametric faults results in highly 
mixed raw feature space, which necessitates non-linear classifica-
tion and feature selection.

Parametric faults are detected by observing system outputs. 
Methods proposed in [3-5] are used to detect parametric faults in 
analog electronic circuits. They selected optimal test frequencies 
for fault detection. However, no all-purpose test frequency selec-
tion method can be applied to all kinds of parametric faults. 

The raw system output observations of parametric faults 
may involve excessive irrelevant information and noise, incurring 
largely unnecessary computation and making fault detection in-
feasible. Therefore, raw system output observations or raw obser-
vation vectors are usually abstracted into features, that is, feature 
vectors, for efficient fault detection. This process is called feature 
selection and reduces computation overhead but may cause in-
formation loss. After feature selection, the remaining information 
must be sufficient for high-precision fault detection. Most stud-
ies on feature selection focus on maximizing the information in 
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RESUMEN
• �Para detectar defectos paramétricos en circuitos analógicos, 

se propone en el presente estudio un nuevo algoritmo de 
selección de características basado en la entropía condicional, 
que se integra en un proceso de detección de defectos basado 
en una máquina de vector soporte (SVM). Para prevenir la 
pérdida significativa de actuaciones eficaces se ejecutó un 
proceso de muestra con una frecuencia significativamente 
alta. Para reducir el sobrecalentamiento  de la computación, el 
algoritmo de selección de características basado en la entropía 
condicional se introdujo posteriormente para comprimir 
los vectores brutos de observación en vectores nuevos de 
observación. La entropía condicional se usó para actualizar la 
probabilidad condicional de un defecto basado en  una nueva 
información de defecto que eventualmente hace más clara 
la probabilidad de defecto. Aplicando el algoritmo propuesto 
de selección de características, se pueden comprimir los 
datos brutos más certeramente y maximizar la información, 
escogiendo las dimensiones que deben incluirse en los nuevos 
vectores de observación.  Los resultados de la simulación 
mostraron que el proceso de detección de defectos presentado 
en el estudio podría clasificar el espacio vector de proceso 
no lineal de circuitos analógicos y conseguía una proporción 
menor de malas clasificaciones que otros métodos actuales 
(p. ej. El método equidistante y el método basado en la 
probabilidad convencional).

• �Palabras clave: Detección de defectos, Entropía condicional, 
Máquina de vector soporte (SVM), Clasificación.
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choosing dimensions to be included in the feature vectors. Some 
feature selection methods were proposed in [6-8] for statistical 
analysis and fault detection. However, whether these methods are 
applicable in analog circuit fault detection is uncertain. 

A fault model of analog circuits based on circle equation was 
proposed in [9]. Tian et al. [9] used complex fault model to build 
features. However, this model can be only used in linear analog 
circuits. Starzyk et al. [10] used entropy to select test points, but 
their method was not used for fault detection. A fault detection 
method [11] using entropies as inputs was only tested in switched 
current circuits. Two fault detection methods based on support 
vector machine (SVM) was proposed in [12] and [13]. They built 
feature vectors with feature extraction based on principal compo-
nent analysis (PCA). Feature extraction is used to build new fea-
tures from original features, for example, wavelet transformation 
transforms time domain feature vectors to frequency domain fea-
ture vectors [14, 15]. However, new features in feature extraction 
may lose the visual meaning of the original features. In analog cir-
cuit fault detection, original features have better intuitive, physi-
cal, or visual meanings. Therefore, feature selection algorithms are 
used to keep the visual meaning of the original features in fault 
detection. A conditional entropy-based feature selection algo-
rithm proposed in this paper can keep the visual meaning of the 
original features with minimizing information loss.

Pan et al. [16] proposed an equidistant feature selection meth-
od in the context of a linear classification fault detection meth-
odology. For example, a raw observation vector would become 
a feature vector with an equidistance of 5. This method is easy 
to implement and runs fast. However, it does not consider using 
information theory to evaluate the information content of each 
raw observation vector dimension. It may cause information loss. 
After feature selection, the remaining information must be suffi-
cient for high precision fault detection. The problem is maximizing 
the information in choosing the dimensions to be included in the 
feature space. To address this problem, we propose a conditional 
entropy-based feature selection algorithm and evaluate this algo-
rithm in SVM-based fault detection, which is a mainstream fault 
detection method for parametric faults. For the rest of the paper, 
the term “fault” shall implicitly refer to “parametric fault” unless 
otherwise denoted.

The rest of the paper is organized as follows: Section 2 de-
scribes the SVM-based fault detection and proposes our condi-
tional entropy-based feature selection algorithm. Section 3 evalu-
ates the performance of our proposal and contrasts our algorithm 
with other feature selection algorithms. Section 4 concludes the 
paper.

2. METHODOLOGY

2.1. FAULT DETECTION FOR PARAMETRIC FAULTS
An overview of the proposed framework for fault detection 

is shown in Fig. 1. In our work, a sinusoidal signal is used as the 
test signal. Fault detection based on SVM for parametric faults 
involves two phases: the training phase and the diagnosis phase. 
The training phase consists of three steps (see Fig. 2).

As mentioned in Section 1, Step 1 (Sampling): The raw system 
outputs are observed by sampling the impulse responses from the 
training circuit instances (a benchmark set of known normal and 
faulty circuit instances). Each raw observation is a vector of n 
samples, that is, these raw observation vectors belong to an n-
dimensional vector space called the raw observation vector space.

Step 2 (Feature Selection): Feature selection is conducted, 
mapping the raw observation vectors of n-dimension into feature 
vectors of m-dimension, where m < n. The m-dimensional vector 
space is called the feature vector space.

Step 3 (Learning): The fault detection SVM is trained with the 
feature vectors obtained in Step 2.

Fig. 2 shows the technology used in each of the three steps. 
In particular, Step 1 samples the impulse responses of the train-
ing circuit instances with the maximum sampling rate possible 
to retrieve raw observation vectors. Step 2 conducts conditional 
entropy-based feature selection to compress the n-dimensional 
raw observation vectors into m-dimensional feature vectors. Step 
3 builds the fault detection SVM by learning the feature vectors 
derived in Step 2. These three steps are further explained in the 
rest of this section.

The diagnosis phase involves similar steps:
Step 1 (Sampling): This step is the same as Step 1 of the train-

ing phase. However, instead of sampling with a maximal rate on 
a training circuit instance (which we know a priori whether it is 
normal or faulty), a test circuit instance whose state (normal or 
faulty) is unknown is sampled. The result is also an n-dimensional 
raw observation vector.Fig. 1: Overview of the proposed framework for fault detection

Fig. 2: Steps of training fault detection SVM
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Step 2 (Feature Selection): This step is also the same as Step 
2 of the training phase. The same feature selection algorithm is 
used to map the n-dimensional raw observation vector into the 
m-dimensional feature vector.

Step 3 (Detection): This step is straightforward. The feature 
vector derived in Step 2 is plugged into the SVM learned in Step 3 
of the training phase. If the SVM indicates that the feature vector 
lies in the “normal” area of the feature vector space, then the cir-
cuit instance under test is normal; otherwise, the circuit instance 
under test is faulty.

To be concise, in the following sections, we shall focus on 
describing the training phase of our SVM-based fault detection 
methodology because of the similarity of the training phase and 
the diagnosis phase. The three steps of the training phase are 
elaborated in Sections 2.1, 2.2, and 2.3.

  
2.2. SAMPLING FOR BUILDING RAW OBSERVATION 

SPACE
A parametric fault is detected through the observation of sys-

tem outputs. However, parametric faults are usually difficult to 
detect. If circuit responses are under-sampled, then useful fea-
tures may be missed.

Although the renowned Nyquist sampling theorem states that 
sampling at more than twice the bandwidth of a signal guarantees 
no loss of information, knowing the bandwidth of its response sig-
nals a priori is difficult if a circuit has potential parametric faults. 
Therefore, all that can be done is to always use the maximum 
sampling rate allowed by our observation device.

Fig. 3 illustrates a sampling process with a loss of the effective 
features. It illustrates three response examples, which include a 
normal response, a response of fault 1, and a response of fault 2. 
Each sampling point with the sampling frequency Fs is a feature of 
a response. The feature is labeled Fi. For example, the first feature 
of the normal response is  , and the second feature of the normal 
response is  . Therefore, the feature vector of the normal response 
is ( , ,...,  ). In a similar manner, the feature vectors of the responses 
of fault 1 and fault 2 in Fig. 3 are represented by ( , ,...,  ) and  ( , 
,...,  ) separately. We use ‘l_fea’ to represent the length of the fea-
ture vectors, and l_fea= Fs/BW, where BW is the bandwidth of the 
CUT. The features may be similar in the different responses of the 
circuit instances, such as  and  ,  and  . If the features of the fault 
response are similar with those of the normal response, then the 
features are useless for the classification in fault diagnosis. This 
similarity means that the effective features are lost. If the feature 
vectors include many useless features, then achieving effective 
fault diagnosis using these feature vectors would be difficult. 

When oversampling technology is used, the sampling fre-
quency is significantly higher than twice the bandwidth of the 
response. This relationship means that the sampling process is ex-
ecuted with a significantly higher frequency, and more features 
can be included in a feature vector. It prevents the loss of as many 
effective features as possible.

The response signal is impulse response of each circuit in-
stance in this study. The impulse response is used because it is the 
simplest response that represents the fault.

2.3. FEATURE SELECTION ALGORITHMS
The side effect of the maximum sampling rate strategy in 

Step 1 (see Section 2.1) shows that raw observation vectors are 
of extremely high dimensions. For example, for a sampling device 
capable of a 100 MHz sampling rate (common to today’s digital 
analyzers), observing a response signal for only 1.2 microseconds 
will result in a 120-dimensional raw observation vector. Moreover, 
when observations are made at the granularity of seconds, the raw 
observation vector dimensions will result in the magnitude of 108.

Such high dimensional raw observation vectors will incur un-
affordable computation in SVM learning (training phase Step 3, 
see Section 2.3). In addition, for most raw observation vectors, 
most of their dimensions do not carry meaningful information. 
Therefore, we have to reduce the dimensions of the raw observa-
tion vector space. For each raw observation vector, only the ele-
ments for the chosen dimensions are retained; all other elements 
are discarded. This step maps each raw observation vector into a 
feature vector of a lower dimension. This process is called feature 
selection, and the reduced dimension vector space is called the 
feature vector space.

Although feature selection reduces computation and storage 
overhead, it may cause information loss [17]. After feature selec-
tion, the remaining information must be sufficient for high preci-
sion (i.e., efficient) fault detection. The problem lies on maximiz-
ing the information in choosing the dimensions to be included 
in the feature vector space [18]. In the following sections, two 
feature selection algorithms are proposed to address this prob-
lem: a conditional probability- and a conditional entropy-based 
algorithm. 

Given a CUT, we generate training circuit instances by varying 
component values within the allowed ranges or by injecting faults 
into the CUT. Hence, some generated circuit instances are normal, 
whereas others are faulty. The raw observation vector of a nor-
mal circuit instance is labeled “normal,” whereas that of a faulty 
circuit instance is labeled “faulty.” We let X represent whether an 
element of one raw observation vector is close to normal: X = 1 
means that the element is close to normal, and X = −1 means that 
the element is close to faulty. We let Y represent whether the raw 
observation vector where X belongs to is “normal” or “faulty.” Y = 
1 means that the raw observation vector is “normal,” and Y = −1 
means that the vector is “faulty.” 

With the abovementioned context, feature selection means 
that the information gain of each dimension in the raw observa-
tion vector space needs to be evaluated in classifying “normal” 
and “faulty” training vectors, and the most information-rich di-
mensions to be retained in the feature vector space need to be 
selected.

2.3.1. Conditional Probability Algorithm
In probability theory, conditional probability is one of the 

most fundamental and important concepts. When an event results 
from (by assumption, presumption, assertion, or evidence) another Fig. 3: Sampling process with loss of effective features
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event, a conditional probability can be used to measure the prob-
ability. We take the conditional probability P(A|B) as an example. 
P(A|B) denotes the probability of event A given event B. In infor-
mation theory, conditional probability is used to denote an update 
of the probability of an event based on new information. In test 
engineering, conditional probability is commonly used to update 
the probability of a fault based on new fault information. It makes 
the fault probability clearer.

Conditional probability can be calculated with joint probabil-
ity. Joint probability is easily confusable with conditional prob-
ability. Joint probability denotes the probability of two events in 
conjunction. We take the joint probability P(A, B) as an example. 
P(A, B) denotes the probability of both events A and B together. It 
can also be written as P(AB). 

P(A|B) is used to examine the probability of event A as it is 
restricted to event B. It means that the probability of event A is 
measured when event B has or will have occurred. The conditional 
probability P(A|B) can be measured by joint probability with P(A, 
B) multiplied by P(B), where P(B) is the probability of event A, and 
P(A, B) is the joint probability of events A and B. P(A|B) is the up-
dated P(A) after evidence B is accounted for.

In the preliminary algorithm of the last section, event X rep-
resents that an element of one raw observation vector is close to 
normal or faulty. The possibility of X is measured by observation 
vectors under a normal or faulty circuit. Event Y represents that 
the CUT is normal or faulty. The possibility of Y is measured by 
learning.

With the abovementioned context, feature selection means 
the information gain of each dimension in the raw observation 
vector space needs to be evaluated in classifying “normal” (nor-
mal) and “faulty” (faulty) training vectors, and the most informa-
tion-rich dimensions to be retained in the feature vector space 
must be selected.

In choosing the most information-rich raw observation vec-
tor space dimensions, a straightforward heuristic method is used 
to find those dimensions with high probabilities of )1|1( == XY  
and )|( 11 −=−= XY  and low probabilities of )1|1( −== XY  
and )1|1( =−= XY . Therefore, a simple formulation would be (in 
case of selecting only one dimension in the feature vector space) 
finding the dimension in the raw observation vector space whose 
X optimizes the following objectives:

(1)

and
(2)

where )(⋅p is the probability function.
We note that Objective Function (2) can be transformed into 

(3)

Therefore, Objective Function (2) equals Objective Function (1). 
Hence, we only need to focus on Objective Function (1). 

We note that to select m dimensions in the feature vector 
space, we only need to apply the optimization algorithm m times, 
and each time removes the selected optimal dimension from the 
candidate set.

2.3.2. Conditional Entropy Algorithm
However, we notice that a better formulation of our feature 

selection problem is a multiple objective optimization problem: 

                (4)

among all dimensions in the raw observation vector space. To 
make this multiple objective optimization problem solvable, we 
approximate the problem by merging the multiple objectives into 
one. Objective Function (1), the preliminary algorithm’s formula-
tion, is only one straightforward way of merging. Whether a better 
way of merging the objectives exists, which retains more infor-
mation contained in individual conditional events )1|1( == XY , 

)1|1( −=−= XY , )1|1( =−= XY , and )1|1( −== XY , is unclear.
We notice that conditional entropy [19] defined in informa-

tion theory can accurately measure the information contained in a 
parameter for decision making. This note inspires us to use condi-
tional entropy as the metric for feature selection. Specifically, ac-
cording to information theory, we define the following conditional 
entropy function:

(5)

where

Our conditional entropy-based feature selection algorithm 
shall choose those dimensions with the least conditional entropy 

)|( XYH  values. The intuition is stated as follows.
We see that conditional entropy is a non-negative real num-

ber. Intuitively, it considers two aspects of using X = x to deter-
mine Y = y. First, )|(log xXyYp ==− 2  measures the uncer-
tainty of claiming Y = y based on the observation of X = x. As 

)|( xXyYp ==  increases, the uncertainty decreases. When 
1=== )|( xXyYp , the uncertainty reaches a minimum of 0. 

Second, the multiplier ),( yYxXp ==   further weighs the uncer-
tainty metric of )|(log xXyYp ==− 2 . If ),( yYxXp ==  is 
larger, then the event ),( yYxX == happens more often; hence, 
the uncertainty metric of )|(log xXyYp ==− 2  is practically 
more useful (hence more weight), and vice versa. 

In fact, information theory has proven that conditional en-
tropy is the best metric to measure the uncertainty [10, 20] of 
using parameter X to determine Y. With this concept, we expect 
the conditional entropy-based feature selection to be a better 
approximation of the multiple objective optimization problem of 
Objective Function (4).

Thereafter, the feature selection based on the conditional en-
tropy works in two steps:

1) Equation (5) is used to calculate the conditional entropy for 
each dimension of the raw observation vector space.

2) The m dimensions with the smallest conditional entropy 
value are chosen to be the dimensions selected from the feature 
vector space.

A remaining technical detail shows that a specific dimension 
of a given raw observation vector is deciding whether it maps to X 
= 1 (normal) or X = −1 (faulty). 

Specifically, we let Ctraining, Cnormal, and Cfaulty be the whole train-
ing set of circuit instances, the subset of all “normal” training 
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circuit instances, and the subset of all “faulty” training circuit 
instances, respectively. We let ),...,,...,,( 21

c
n

c
i

ccc FFFFf =  be the 
raw observation vector for a specific circuit instance trainingCc ∈ , 
where n is the dimension of raw observation vector space. 

We now suppose that we are interested in evaluating the ith 
dimension of the raw observation vector space. Therefore, we need 
to map each )( training

c
i CcF ∈  into either 1=c

iX  or 1−=c
iX . 

This requirement is accomplished in four steps:
Step 1: The average value of  V

iF  for all  normalC∈V  is calcu-
lated with

(6)

This value is regarded as the expected value of the ith dimen-
sion of a raw observation vector when the given circuit instance 
is normal.

Step 2: The deviation of c
iF  from normal

iF  is calculated by

(7)

Step 3: The average deviation of each normal and faulty class 
is calculated by Equations (8) and (9), respectively:

(8)

(9)

Step 4: The cX  value for c
iF  is decided by the threshold iq : 

(10)

2.4. LEARNING WITH SVM
After performing feature selection, we map the training raw 

observation vectors to a lower dimension feature vector space. 
Such a reduction of raw data allows us to carry out the last step 
of the training phase: learning with SVM. 

The main idea of SVM is finding a separating hyperplane for 
the “normal” class and “faulty” class in the feature vector space 
(see Fig. 4). A separating hyperplane S is defined by a vector w (in 
feature vector space) and an offset b stated as follows:

(11)

where f is a vector in the feature vector space, and ⋅⋅,  means 
inner product.

The goal is finding the optimal w and b. SVM aims to find 
the separating hyperplane that maximizes the distance from the 
nearest training feature vectors [21, 22]. These nearest training 
feature vectors are called support vectors. SVM theory proves 
that for optimal w and b, hyperplane }1,|{ =+ bfwf  and 

}1,|{ −=+ bfwf , which are parallel to the separating hyper-

plane }0,|{ =+= bfwfS , shall intersect with all class “normal” 
and class “faulty” support vectors, respectively (see Fig. 3). Fur-
thermore, the distance from any support vector to the separating 
hyperplane S is w/1 .

We suppose that b is known; thus, w must satisfy the following 
optimization problem 

(12)

where yi denotes whether the training feature vector fi belongs 
to the class of “normal” (yi = 1) or “faulty” (yi = −1). fN  is the index 
set of all training feature vectors. Optimization problem (12) can be 
solved by the following optimization problem on variable set {ai}:

  
(13)

where {ai} are also called Lagrangian multipliers. After solving 
Optimization Problem (13), we can derive w with ii

Ni
i fyaw

f

∑
∈

= . 
Furthermore, if 0>ia , then the corresponding fi is a support vec-
tor. We can use this (theoretically, any of such) support vector to 
find b, as 1, =+ bfw i  when fi is a class “normal” support vector, 
and 1, −=+ bfw i  when fi is a class “faulty” support vector. 

The above SVM hypeplane algorithm is a linear classifier. SVM 
can also create nonlinear classifiers by applying kernel functions. 
Therefore, Optimization Problem (13) becomes 

 (14)

where K()⋅⋅,  is the kernel function. We can use similar approach-
es to derive the non-linear optimal separating hyperplane Snonlinear:

(15)

Fig. 4: SVM separating hyperplane

http://en.wikipedia.org/wiki/Linear_classifier
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Intuitively, a kernel function non-linearly maps the original 
feature vector space into a new feature vector space (see Fig. 
5). This method is often useful when training feature vectors (in 
the original feature vector space) are too intermingled to allow a 
linear separation hyperplane. In such cases, kernel function may 
map these training feature vectors into a new feature vector space 
where a linear separation hyperplane exists (see Fig. 5). This step 
allows linear classification in the new feature vector space, and 
the classification result corresponds (through the kernel function) 
to a non-linear classification in the old feature vector space.

Various kinds of kernel functions exist for SVM learning, for 
example, linear, polynomial, radial basis function (RBF), and sig-
moid, and we can design our own kernel functions. Different ker-
nel functions lead to different shapes of separating hyperplanes 
and hence different classification boundaries. Given a training 
set, a particular kernel function can possibly work well, whereas 
another kernel function may not. Until today, no good ways can 
be used to choose or design an optimal kernel function. In most 
cases, the choice or design depends on experience. 

3. EXPERIMENTAL TEST AND RESULT ANANLYSIS
In analog integrated circuits, active filters are common. Single 

integrated circuits comprising active filter elements are shown in 
Fig. 6. Without the loss of generality, the active filter circuits in 

Fig. 7 are used to evaluate the performance of our fault detection 
methodology. For each CUT, we assign normal and faulty param-
eters to its components, to generate 100 normal and 100 faulty 
circuit instances as training set and another 100 normal and 100 
faulty circuit instances as testing set. Without loss of generality, 
non-linear SVM learning described by (14) and RBF kernel func-
tion, which is a widely used non-linear kernel function for non-
linear SVM learning, are used. In classification algorithm based on 
non-linear SVM misclassification rate can indicate fault detection 
accuracy. 

Fig. 8 to Fig. 10 show the performance of fault detection with 
conditional entropy-based feature selection for CUT in Fig. 5. We 
use five different samples for training or testing. Fig. 8 shows the 
results for the two-pole active filter CUT (see Fig. 7(a)), Fig. 9 for 
the three-pole active filter CUT (see Fig. 7(b)), and Fig. 10 for the 
five-pole active filter CUT (see Fig. 7(c)). Each solid point of tri-
angle or square in Fig. 8 to Fig. 10 represents a sample. The raw 
observation vectors are all of 120-dimension. We carry out three 
different trials of feature selection, reducing the dimension from 
120 to 60, 40, 30 and 20. 

Fig. 8 to Fig. 10 compare the accuracy of conditional prob-
ability-based feature selection and conditional entropy-based 
feature selection. The performances of all CUTs show that con-
ditional entropy-based feature selection achieves better accuracy 
than conditional probability-based feature selection. Fig. 8 to Fig. 

Fig. 5: Feature space of SVM
Fig. 6: Single integrated circuit comprising active filter elements

Fig. 7: Example CUT .(a) two-pole active filter. (b) three-pole active filter. (c) five-pole active filter

http://en.wikipedia.org/wiki/Kernel_(integral_operator)
http://en.wikipedia.org/wiki/Kernel_(integral_operator)
http://en.wikipedia.org/wiki/Kernel_(integral_operator)
http://en.wikipedia.org/wiki/Kernel_(integral_operator)
http://en.wikipedia.org/wiki/Kernel_(integral_operator)
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10 show that conditional entropy-based feature selection better 
evaluates the information content of each raw observation vector 
dimension when selecting features. The figures also illustrate that 
the conditional entropy-based feature selection solves the mul-
tiple objective optimization problem of Objective Function (4) in 
Section 2.2.3 well. The figures show that the remaining informa-
tion is sufficient for high precision fault detection after executing 
conditional entropy-based feature selection. 

Fig. 11 compares the accuracy of the equidistant feature se-
lection [16] method and conditional entropy-based method. The 
equidistant feature selection in [16] is used to execute feature 
selection without measuring each feature. It is easy to implement. 
However, it may cause information loss. Fig. 11 shows that condi-
tional entropy-based feature selection achieves lower misclassifi-
cation rates (hence better accuracy). This is because conditional 
entropy-based feature selection measures each feature with the 
entropy.

4. CONCLUSION
In this study, a fault detection method with conditional entro-

py-based feature selection was presented for detecting paramet-
ric faults in analog circuits. The method involved two phases: the 
training phase and the diagnosis phase. In the two phases, feature 
selection was essential step to reduce computation overhead. 

We observed the performance of three feature selection meth-
ods: equidistant method, conditional probability-based method 
and conditional entropy-based method. The equidistant method 
executed feature selection without measuring information loss. 
The conditional probability-based method used conditional prob-
ability to select features for minimizing information loss. However, 
feature selection in the conditional probability-based method can 
be changed into a multiple objective optimization problem. The 
study made the multiple objective optimization problem solvable 
in the conditional entropy-based method. In Section 3 we car-
ried out three different feature selection methods, reducing the 

Fig. 8: Misclassification rate of fault detection with conditional probability-based and conditional entropy-based  for two-pole active filter CUT. (a) training set 
of feature dimension 60. (b) testing set of feature dimension 60. (c) training set of feature dimension 40. (d) testing set of feature dimension 40. (e) training set of 
feature dimension 30. (f) testing set of feature dimension 30. (g) training set of feature dimension 20. (h) testing set of feature dimension 20
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feature dimension from 120 to 60, 40, 30 and 20. In the practi-
cal application of the three methods in this study, the proposed 
conditional entropy-based feature selection reduced the feature 
dimension while it enhanced the fault detection accuracy. It better 
evaluated the information content of each raw observation vec-
tor dimension when selecting features in fault detection. In this 
study, the fault detection for parametric faults in analog circuits 
achieved low misclassification rates. The lowest misclassification 
rate of training sets for different samples of Fig. 7(a), Fig. 7(b) and 
Fig. 7(c) is 0.055%, 0.12% and 0.17%. The lowest misclassification 
rate of testing sets for different samples of Fig. 7(a), Fig. 7(b) and 
Fig. 7(c) is 0.135%, 0.13% and 0.19%. It showed that the SVM can 
separate non-linear space with optimal separating hyperplane.
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