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Study on deep learning-based 
detection method of key points of 
unconstrained Pacific white shrimp 
in water
Estudio de un método de detección basado en deep learning de puntos clave de 
mediciones no restringidas del camarón blanco del Pacífico en el agua

ABSTRACT
In the aquaculture industry, aquatic seedlings are commonly 

known as “chips.” The phenotypic data of shrimp seedlings, which 
can reflect their growth, are important reference indexes for bre-
eding purposes. In traditional shrimp culture, key points on the 
shrimp body are mainly determined through artificial means, and 
parameters are manually measured to obtain breeding-related 
phenotypic data. However, this manual approach is not only time-
consuming and laborious but can also lead to human errors. Mo-
reover, shrimp are highly sensitive to handling, which can easily 
cause physical harm, spread diseases, and lead to water contami-
nation during manual measurements. To improve the speed and 
accuracy of shrimp phenotypic data collection, this study pro-
posed a novel approach: a deep learning-based network for the 
automatic detection of shrimp key points. The proposed method 
minimized physical contact, prevented potential damage, and 
enabled the collection of more comprehensive phenotypic data. 
With Pacific white shrimp as the study object, deep learning was 
applied to detect key points of the shrimp body. The key point 
detection network could detect 23 key points of the top view and 
10 key points of the side view, which could provide data support 
for subsequent measurements of phenotypic parameters and for 
modeling shrimp body growth. Results show that, compared with 
traditional methods, the proposed approach has advanced perfor-
mance, speed, and robustness in terms of accuracy and efficiency. 
The accuracy of key points of the top view reaches 97.57%, with 
an average test time of 137.3 ms, and the side view verification 
set a key point detection accuracy of 98.61%, with an average 
test time of 49.3 ms. This study realizes the unconstrained mea-
surement of shrimp with water, which can accurately and quickly 
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RESUMEN
• �En la industria acuícola, las plántulas acuáticas se conocen 

comúnmente como «chips». Los datos fenotípicos de las 
plántulas de camarón, que pueden reflejar su crecimiento, son 
importantes índices de referencia para la cría. En el cultivo 
tradicional del camarón, los puntos clave del cuerpo del 
camarón se determinan principalmente por medios artificiales, 
y los parámetros se miden manualmente para obtener datos 
fenotípicos relacionados con la cría. Sin embargo, este método 
manual no sólo requiere mucho tiempo y trabajo, sino que 
también puede dar lugar a errores humanos. Además, las 
gambas son muy sensibles a la manipulación, lo que puede 
causarles daños físicos, propagar enfermedades y contaminar 
el agua durante las mediciones manuales. Para mejorar la 
velocidad y la precisión de la recopilación de datos fenotípicos 
de camarones, este estudio propuso un enfoque novedoso: 
una red basada en el aprendizaje profundo para la detección 
automática de puntos clave de camarones. El método propuesto 
minimizó el contacto físico, evitó posibles daños y permitió 
la recopilación de datos fenotípicos más completos. Con el 
camarón blanco del Pacífico como objeto de estudio, se aplicó 
el aprendizaje profundo para detectar los puntos clave del 
cuerpo del camarón. La red de detección de puntos clave pudo 
detectar 23 puntos clave de la vista superior y 10 puntos clave 
de la vista lateral, lo que podría proporcionar datos de apoyo 
para mediciones posteriores de parámetros fenotípicos y para 
modelar el crecimiento del cuerpo del camarón. Los resultados 
muestran que, en comparación con los métodos tradicionales, 
el enfoque propuesto tiene un rendimiento avanzado, velocidad 
y robustez en términos de precisión y eficiencia. La precisión 
de los puntos clave de la vista superior alcanza el 97,57%, con 
un tiempo medio de prueba de 137,3 ms, y la verificación de 
la vista lateral establece una precisión de detección de puntos 
clave del 98,61%, con un tiempo medio de prueba de 49,3 ms.  
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Este estudio realiza la medición sin restricciones de camarones 
con agua, que puede obtener con precisión y rapidez los puntos 
clave de los camarones y satisfacer las necesidades de medición 
de múltiples datos fenotípicos.

• �Palabras clave: datos fenotípicos, aprendizaje profundo, 
camarón blanco del Pacífico, detección de puntos clave, 
medición sin restricciones.
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obtain the key points of shrimp and meet the needs of multiple 
phenotypic data measurement.

Keywords: phenotypic data, deep learning, Pacific white 
shrimp, key point detection, unconstrained measurement.

1. INTRODUCTION
Phenotypic data of aquatic animals are the main observation 

data during the breeding of seedlings. However, the long-term 
manual measurement of phenotypic data cannot meet the speed 
and precise measurements required in the breeding process. Re-
searchers have been exploring the use of traditional image proces-
sing algorithms to complete the measurement of phenotypic data 
through object detection and segmentation, but strict constraints 
were required [1-2]. To solve the generalization performance of 
the algorithms, deep learning algorithm was used to complete the 
phenotypic measurement of aquatic animals [3-4]. However, few 
phenotypic data indicators were obtained, which cannot meet the 
requirements of breeding data quantity, and the measured pheno-
typic data quantity was insufficient.

The accuracy of key point detection is important for measuring 
the phenotypes of aquatic animals. Most existing deep learning 
methods for key point detection utilize thermal map and regres-
sion techniques. While these methods significantly improve accu-
racy when high-quality images are available, they require reliable 
image quality as a prerequisite. Aquatic animals, however, often 
exhibit large deformations and high swimming speeds, making it 
challenging to capture high-quality images in real-time. Factors 
such as impurities and varying light conditions in the water can 
further hinder the acquisition of suitable image samples. In addi-
tion, rapid and accurate measurement in batches is needed to bre-
ed and raise seedlings, yet there is currently no relevant literature 
on this topic [5-6].

 Therefore, with Pacific white shrimp as the study object, this 
study established an unconstrained aquatic animal image acqui-
sition device that can obtain both the top and side views of white 
shrimp. Considering the large number of key points of the top 
view, an improved hourglass network was designed to improve 
the accuracy. There were few key points of the side view, so a 
lightweight design was adopted to improve the speed of key point 
identification. Finally, a unified deep learning model for key point 
detection was established, and key point identification of the top 
view and a test graph were completed, which ensured the accura-
cy and speed of identification.

2. STATE OF THE ART 
The development of computer vision technology has enabled 

researchers to explore new methods for measuring the phenotypic 
data of aquatic animals. Monkman [7] proposed the use of R-CNN 
to detect the predicted position and the region of the color plate. 
By taking the length of the maximum detection frame as the pre-
dicted width of fish, the measurement method was limited by the 
detection accuracy of the boundary frame. Tseng [8] used a con-
volutional neural network to detect the position of fish head, fish 
tail, and color plate. By carefully designing each image proces-
sing unit module, the actual length of the fish can be accurately 
calculated. The algorithm has high complexity due to the mutual 
influence between various image modules and the large number 
of parameters in each module, and the locations of the fish head 
and tail points were easily affected by environmental interference. 
Although the measurement of underwater fish body size was not 

realized, the difficulty of realization was discussed. Lai[9] adopted 
YOLO4 to complete target detection for shrimp body images ob-
tained underwater and used the image segmentation algorithm to 
obtain the length and width of shrimp body. Setiawan [10] adop-
ted traditional image processing algorithms to obtain shrimp body 
morphology indicators through edge detection and region of in-
terest processing, as well as constantly optimized the parameters 
of the algorithm according to image quality. Bao [11] applied a 
two-stage image segmentation algorithm to obtain the length of 
shrimp. However, measurements out of water and segmentation 
algorithm were not carried out in real-time, so it was difficult to 
apply to the breeding process requiring rapid measurement. Saleh 
[12] used the key point detection method to measure morpholo-
gical and phenotypic data of shrimp body, but the method was 
mainly used for weight prediction and disregarded the accuracy 
of phenotypic data such as body length. Meanwhile, there was 
no measurement data of the top view of shrimp body. The above 
studies used target detection and image segmentation technolo-
gy to obtain the outline of images and, subsequently, the length 
and width of aquatic animals. However, such methods could only 
measure a small number of phenotypic data indicators of aquatic 
animals.

The phenotypic data of aquatic animals are mainly measured 
according to the key points on their bodies. Thus, the accuracy of 
key point detection affects the accuracy of the final phenotypic 
data measurement. DeepPose proposed by Toshev [13] introduced 
deep learning into human key point detection for the first time. 
The cascade network composed of deep neural network regressors 
was constructed to detect key point coordinates of the human 
body and obtain accurate human posture. The model can learn 
input spatial features but cannot model the dependency relation-
ship explicitly in output space. To further improve the recognition 
accuracy of key points, Park [14] used depth information to impro-
ve the confidence of key point location and solve the problem of 
key point recognition with an obscured human body. Moccia [15] 
improved the accuracy of pose detection through spatiotemporal 
characteristics. The error value of the key point position of the 
algorithm does not affect the pose estimation, but it cannot meet 
the application in the measurement field. On the one hand, the 
detection algorithm based on key points pursues the accuracy of 
recognition. On the other hand, it constantly explores the light-
weight quality of the model. Wang [16] used an improved Kalman 
filter to compensate for errors in fast motion. The aim was to en-
hance the detection accuracy of gestures and avoid gesture loss in 
complex backgrounds, thereby improving the recognition rate of 
key points of the hand and reducing the number of parameters in 
the YOLO3 ratio. However, this method is still a two-stage opera-
tion, which is not conducive to improving subsequent recognition 
speed. Groos [17] proposed Efficient Pose, a new convolutional 
neural network architecture that can quickly generate key point 
heat maps by limiting memory usage and computational cost to 
support the deployment of key point detection programs on edge 
devices. Xu [18] proposed the ViTPose model of key point detection 
in the latest transformer framework. Although the structure has 
not been refined, it can obtain relatively good detection accu-
racy on various data sets and has relatively good generalization 
performance. ViTPose allows the flexible adjustment of attention 
mechanism types, input resolution, pre-training, and finetune 
(fine-tuning) strategies, empirically demonstrating that knowled-
ge of large models can be transferred to small models by setting 
simple knowledge tokens. Considering the running speed of the 
algorithm, Huang [19] embedded a coordinate transformer in the 
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target detection model to realize the lightweight model of multi-
person attitude detection. However, missing detection still occurs. 

The above target detection algorithms are mostly used in the 
field of pose detection. Although Yao [20] used the key-point de-
tection algorithm for estimating the body size of pigs, the cen-
timeter-level error produced cannot meet the accuracy require-
ments for small-sized aquatic animals. The deviation of key point 
detection has minimal impact on pose estimation, but it introdu-
ces relatively large measurement errors. In order to improve the 
accuracy of key point detection, Newell [21] first proposed the 
Hourglass net network structure, which achieved accurate detec-
tion of human skeletal key points. Zhou [22] proposed a Graphi-
cal Model based Structure Context Enhancement Network (GM-
SCENet) based on an hourglass network. The proposed network 
enhances multi-scale information and improves the robustness of 
key point location through a Structure Context Mixer (SCM) and 
a Cascade Multi-Level Supervision (CMLS) module. The deep net-
work model based on the hourglass architecture has a concise and 
easily extensible structure, showing accurate and efficient per-
formance. To improve the feature extraction capabilities of deep 
learning networks and create a lightweight key point recognition 
model, Sun[23] proposed a high resolution network (HRNet) that 
integrates multi-scale features, reducing the complexity of the 
network, and Zhang[24] proposed a high-resolution feature lear-
ning network that can detect key points faster.

The above studies focused on key point detection method ba-
sed on deep learning. In deep learning, it is difficult for the coor-
dinate regression method to accurately extract the dependency 
information between key points and structures due to its simple 
models and poor ability to learn the dependency relationship bet-
ween structures, resulting in low algorithm accuracy. The heat map 
contains the probability information of key points in space, and it 
is more suitable for the whole key point detection. The key point 
algorithm based on heat maps generates heat maps by calculating 

the probability that each pixel in the image is critical, rather than 
directly regressing the coordinate information of the key points. 
This enables the model to provide the information of key points 
and pixels around the key points, thus improving the accuracy and 
generalization ability of key point detection. The studies discuss 
the accuracy of key point identification in input high-quality ima-
ge samples, which cannot be applied to the rapid and accurate 
measurement of phenotypic data in batches during the breeding 
process of Pacific white shrimp. During population breeding, the 
phenotypic data of a large number of shrimp seedlings must be 
collected quickly and accurately. This entails not only the algo-
rithm to meet the requirements but also the equipment to relia-
bly collect unconstrained shrimp body image samples in water. 
In this study, an image acquisition device was established that 
can quickly obtain the top and side views of Pacific white shrimp. 
A deep learning network combined with hourglass network and 
HRNet structure features was designed, which can detect the key 
points of the top and side views of Pacific white shrimp in quasi-
real time, meeting the requirements of accuracy and speed. The 
identification of key points of the top view can be improved by 
inserting a relay module in the hourglass network. The side view 
can optimize the HRNet network structure to improve the identi-
fication speed.

The remainder of this study is structured as follows. Section 3 
describes the image acquisition device for the Pacific white shrimp 
and constructs a deep learning network model that can detect 
the key points of the top and side views. Section 4 completes the 
detection of the top view and key points based on the model, rea-

Fig. 1. Hardware structure of the device.

Fig. 2. Shrimp key points: (a) Key points of the top view (b) Key points of the side 
view.

Serial 
number Point name Position point specification

Key points of the top view

1 top-head Edge of the shrimp head

2–3 eye-up (down) Marginal point of the upper (lower) eye socket

4–5 bw-up (down)
Marginal point on the upper (lower) edge of 

the widest part of the shrimp head

6 mid Midpoint of the first shrimp curve

7–20 bn-up (down)
Upper (lower) edge point where the n node 

intersects with the next node

21 tail-up Upper edge point of the shrimp tail

22 top-tail
Marginal point of the central axis of the shrimp 

body away from the head

23 tail-down Lower edge point of the shrimp tail

Key points of the side view

1 side-head Edge of the shrimp head

2–3 b1-up (down)
Upper (lower) edge where the head and the 

body intersect

4–5 b3-up (down)
Upper (lower) edge point where the third node 

of the shrimp intersects with the next node

6–7 b5-up (down)
Upper (lower) edge point where the fifth node 
of the shrimp intersects with the next node

8–9 b7-up (down)
Upper (lower) edge point where the seventh 
node of the shrimp intersects with the next 

node

10 side-tail Edge point of the shrimp tail

Table 1. Description of key points of the top view and side view of Pacific white shrimp.
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lizes the index evaluation of different models. Finally, Section 5 
summarizes this study and draws relevant conclusions.

3. MATERIAL & METHODS

3.1. HARDWARE DEVICE STRUCTURE
The hardware used in this study includes four strip light sou-

rces on the inside surface of the device, a slide track inside the 
device, and two 4 MP cameras positioned in the overhead and 
side-view directions. A shrimp box was used, with one side of the 
box transparent and the other side white. When detecting key 
points, 3/4 of the shrimp box was filled with water, and the shrimp 
box was placed on the slide and pushed to collect the top view 
and side view of the shrimp. The device structure is shown in Fig. 
1. Note that when the shrimp box is pushed into the device, if the 
unconstrained shrimp do not swim quickly in water, the camera 
can be turned on to take both top and side views of the shrimp, 
providing image data required for the algorithm model.

3.2. IMAGE ACQUISITION AND DATA PREPARATION
Shrimp do not always maintain the same posture and angle in 

water. Therefore, to obtain a more robust model and adapt it to 
the different postures and body types of Pacific white shrimp, this 
study collected 3,000 top and side views of shrimp with different 
body types and postures using the hardware in the previous sec-
tion. Next, 2,500 of the views were used to train highly accurate 
and efficient key-point detection models, and the remaining views 
were used to evaluate the performance of the trained models.

Meanwhile, to solve the difficulties and problems existing in 
the measurement of phenotypic parameters or pose estimation by 
shrimp breeders, this study defined 23 key points of the top view 
and 10 of the side view based on the needs of the phenotypic 
parameters and pose estimation, as shown in Fig. 2. The label des-
cription for each point is shown in Table 1.

3.3. ALGORITHM MODEL STRUCTURE
In this study, a new shrimp detection algorithm was designed 

based on the characteristics of top and side views of Pacific white 
shrimp in image acquisition hardware, considering the balance bet-

Fig. 3. Overall network framework: (a) image reading, (b) target detection module, (c) accurate target positioning after target detection, (d) key point detection 
module, and (e) final output results, including key points of shrimp and shrimp motion posture. 

Fig. 4. Overall network architecture of detection module in top view. 
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ween operation accuracy and operation efficiency. The overall model 
structure (Fig. 3) is divided into a target detection sub-module, a top 
view detection sub-module, and a side view detection sub-module.

3.4. TOP VIEW DETECTION MODULE
As shown in Fig. 4, the top view detection module consists 

of two cascaded 2-stage hourglass modules and relay supervi-
sion modules. In the hourglass module [21], the input image is 
first downsampled through a max pooling layer to reduce its area 
to 1/4 of the original image, and then upsampled using bilinear 
interpolation to restore its original size. At the same time, the 
hourglass module preserves the original information through resi-
dual addition, allowing the hourglass module to learn features at 
different scales and preserve the original features as much as pos-
sible. However, using bilinear interpolation for upsampling simply 
restores the image to its original size, while losing some of the 
data lost during the downsampling process. Therefore, this paper 
uses deconvolution for upsampling to reduce the information lost 
during the upsampling process. Fig. 5 illustrates that 2-stage im-
proved hourglass. 

In addition, in the network model shown in Figure 4, Leaky 
ReLU is selected as the activation function. Meanwhile, to stack 
multiple hourglass modules in the entire network architecture and 
prevent gradient disappearance caused by network depth, the net-
work can constantly repeat the bottom-up and top-down feature 
extraction to improve network reliability. One characteristic of 
Hourglass networks is Intermediate Supervision. It adds a supervi-
sed part in each stage of the network, so that the output heatmap 
of each order calculates the loss using the ground truth and then 

calculates the gradient for backpropagation, that is, the training 
loss after each hourglass module was calculated to help the trai-
ning of the hourglass module in the later stage.

3.5. SIDE VIEW DETECTION MODULE
Different from the top view detection module, the structure 

of key points of the side view is simple, and the number of key 
points is greatly reduced compared with those of the top view. To 
further accelerate the overall efficiency of the algorithm, a lighter 
network structure was used in the side view detection module 
[23], as shown in Fig. 6(see section: supplementary material). The 
side view detection module replaces the intermediate supervision 
and hourglass modules in the top view detection module by con-
necting the subnet from high resolution to low resolution in para-
llel. While greatly reducing the model parameters, the multi-scale 
repeated fusion was carried out by repeatedly exchanging infor-
mation on the parallel multi-resolution subnetwork to maintain 
the precision of key point detection. The paper did not make any 
structural modifications to the model proposed in reference [23], 
but only trained the network model based on the number of key 
points in the shrimp side view.

4. RESULTS 

4.1. KEY POINT DETECTION MODEL TRAINING AND 
PREDICTION

To train a robust and high-precision key point detection mo-
del, the 2,500 training sets prepared in Section 3.2 were used for 

Fig. 5. Improved hourglass module. 

Model Average training time s/epoch Average prediction time ms/per Model parameter 
MB (Megabyte)

MobileNetV2 10.0 28.1 33.1
ResNet50 16.5 35.5 272.3
ResNet101 35.2 64.2 424.5

ShuffleNetV2 10.5 31.2 24.7
Hourglass Net* 55.6 137.3 199.2

HRNet 18.6 49.3 32.0

Table 3. Comparison of efficiency of different models: Hourglass Net * in the table was proposed by this paper.

Table 2. PCK comparison of different models in top view and side view: Hourglass Net * in the table was proposed by this paper.

Model               CK threshold
 top view  side view

0.04 0.06 0.08 0.1 0.12 0.14 0.04 0.06 0.08 0.1 0.12 0.14

MobileNetV2 0.116 0.229 0.321 0.407 0.475 0.536 0.291 0.377 0.461 0.532 0.595 0.652

ResNet50 0.372 0.586 0.725 0.823 0.883 0.925 0.593 0.64 0.729 0.779 0.811 0.832

ResNet101 0.233 0.4 0.526 0.631 0.705 0.764 0.497 0.536 0.636 0.702 0.749 0.786

ShuffleNetV2 0.085 0.174 0.257 0.339 0.408 0.473 0.318 0.429 0.526 0.601 0.661 0.616

Hourglass Net * 0.715 0.893 0.955 0.978 0.986 0.991 0.669 0.821 0.895 0.928 0.944 0.954

HRNet 0.534 0.747 0.856 0.916 0.947 0.966 0.62 0.771 0.857 0.899 0.924 0.943
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training. The resolution of the input image was 512×512, and a 
128×128 probability heat map was generated for the correspon-
ding truth value coordinates. A probabilistic heat map was used 
to represent the coordinates of key points, and the probability 
value of each pixel on the probabilistic heat map generated was 
calculated using the multivariate Gaussian model. In particular, 
the closer the key point was, the closer the corresponding pro-
bability value was to 1 (Fig. 7(see section: supplementary ma-
terial)).

During the training and reasoning process, the training device 
configured with a 3.70 GHz Intel i7-8700K CPU and an NVIDIA 
RTX2080 SUPER graphics card was used. During the overall tra-
ining, the accuracy of the training set and test sets changed, as 
shown in Fig. 8(see section: supplementary material). The predic-
tion results based on the trained model are shown in Fig. 9(see 
section: supplementary material). The training speed of the top 
view detection model is slower than that of the side view, while 
the accuracy of the final verification set is slightly lower than that 
of the side view due to the large number of keys and structural 
changes in the top view. Finally, the accuracy of key point de-
tection in the top view and side view verification sets reached 
97.57% and 98.61%, respectively, after training.

4.2. PRECISION COMPARISON EXPERIMENT OF THE KEY 
POINT DETECTION MODEL

To compare the accuracy of different key point detection net-
works in shrimp key point detection, six of the latest key point de-
tection networks were selected for comparison: MobileNetV2[25], 
ResNet50[26], ResNet101, ShuffleNetV2[27], Hourglass Net, and 
HRNet. The percentage of correct key-points (PCK), referring to 
the proportion of normalized distance between detected key 
points and their corresponding true values less than the set thres-
hold, was adopted as the indicator to evaluate the accuracy per-
formance of the model. Its normalized threshold is from 0 to 1. In 
the experiment, each of the six models was tested on 500 images, 
and PCK was calculated using different thresholds as an evalua-
tion indicator. The results are shown in Table 2 and 3.

Hourglass Net is found to be considerably more accurate than 
other networks in the detection and comparison of key points of 
the top view. In the comparison of key point detection of the side 
view, because the structure of key points here is simpler than that 
of the top view, the performance gap between models is smaller 
than that of the top view. Both Hourglass Net and HRNet have 
good performance in terms of accuracy.

4.3. EFFICIENCY COMPARISON EXPERIMENT OF KEY 
POINT DETECTION MODELS 

To further compare the operating efficiency of different key 
point detection networks in shrimp key point detection, the six 
key point detection networks in the previous section were selected 
for comparison. Model size, training time per batch, and average 
time of model prediction were taken as the indexes to evaluate 
model efficiency and performance. In the experiment, the six mo-
dels were each tested on 1,000 images, and the results are shown 
in Table 3.

According to the above table, although Hourglass Net achieves 
the best key point detection accuracy according to the experimen-
tal results in Section 4.2, its efficiency is far behind that of other 
networks. HRNet has high efficiency while maintaining excellent 
performance in accuracy. Therefore, based on the above experi-
mental results and the actual application scenario of shrimp key 
point detection, Hourglass Net was selected in this study as the 

top view key point detection network and HRNet as the side view 
key point detection network.

5. DISCUSSION 
In light of the pain points of traditional methods for measuring 

shrimp phenotypic data and the shortcomings of existing compu-
ter vision approaches, this study took Pacific white shrimp as the 
study object and applied a deep learning algorithm to the field 
of shrimp key point detection for the first time. A novel shrimp 
key point detection method based on deep learning was proposed, 
which detected a total of 33 key points from both top and side 
views simultaneously. The following conclusions could be drawn:

(1) �High detection accuracy was achieved, with the key point 
detection accuracy for the top and side views reaching 
97.57% and 98.61%, respectively.

(2) �Compared to other advanced algorithms, the proposed 
method balances detection accuracy and efficiency. It took 
an average of 49.3 ms to detect a key point of the side 
view and an average of 137 ms to detect a key point of 
the top view, saving substantial manpower and material 
resources. Moreover, the measured phenotypic data were 
comprehensive.

(3) �The method enabled the non-constrained measurement of 
shrimp in water. Compared to measurements taken out of 
water, the shrimp were completely in their natural state, 
which reduced their stress response and improved the level 
of aquaculture outcomes.

Although this study focused on Pacific white shrimp, the pro-
posed key point detection algorithm is applicable to the key point 
detection and phenotypic data measurement of other shrimp spe-
cies.
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