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Ultrasonic metal welding 
quality prediction model 
based on MHSA–LSTM–AHP

Modelo de predicción de la calidad de la soldadura ultrasónica de metales 
basado en MHSA-LSTM-AHP

ABSTRACT
Ultrasonic Metal Welding (UMW) technology is widely used in 

industries such as electric vehicle manufacturing owing to its effi-

ciency, low heat input, and ability to join dissimilar metals. Howe-
ver, the weld quality of UMW technology is susceptible to various 
process parameters; thus ensuring consistency is challenging. A 
quality prediction model that combines the Analytic Hierarchy 
Process (AHP), Long Short-term Memory (LSTM), and Multi-head 
Self-attention (MHSA) was proposed in this study to evaluate the 
joint quality of UMW technology accurately. The UMW process 
was analyzed in four stages based on current production opera-
tions, with characteristic information extracted from the process 
characteristic data sampled by the in-line inspection equipment. 
A hierarchical framework was developed by drawing on the prin-
ciples of the AHP to elucidate the interrelationships between the 
real-time process data, the process characteristics, and the UMW 
joint quality. An MHSA-LSTM-AHP quality prediction model was 
established in this study by harnessing the advantages of LSTM 
and MHSA in learning temporal dependencies. A comparative 
analysis was conducted by using the Genetic Algorithm-optimized 
Backpropagation (GA-BP) Neural Network and LSTM-AHP models 
to evaluate the performance of the proposed model. Results indi-
cate that the proposed model performs well in predicting tensile 
strength and contact resistance, with a mean error of 3.21% and 
3.7%, respectively. This study can provide a satisfactory reference 
for the construction of an online quality monitoring system and 
the optimization of the UMW process. 

Keywords: Ultrasonic Metal Welding, Prediction Model, Long 
Short-term Memory, Analytic Hierarchy Process, Multi-head Self-
attention.

1. INTRODUCTION
Ultrasonic Metal Welding (UMW) is a solid-state welding 

technology that uses high-frequency ultrasonic energy. Owing to 
its low dependency on the intrinsic properties of materials and 
ability to minimize energy loss during the formation of the contact 
zone in welded compounds, UMW is widely used in the produc-
tion of automotive components, such as lithium-ion battery tabs, 
wire terminals, and electronic devices[1]-[3]. Despite such advan-
tages, UMW technology faces a major challenge: lack of reliable 
nondestructive technologies for evaluating the weld quality [4-
5]. The current industry standards for assessing the weld quality 
refer mainly to the “Performance Specification for Ultrasonically 
Welded Wire Terminations,” which was published by USCAR (Unit-
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RESUMEN
• �La tecnología de soldadura ultrasónica de metales (UMW) 

se utiliza ampliamente en industrias como la fabricación de 
vehículos eléctricos debido a su eficiencia, bajo aporte de 
calor y capacidad para unir metales diferentes. Sin embargo, la 
calidad de la soldadura de la tecnología UMW es susceptible 
a diversos parámetros del proceso, por lo que garantizar la 
consistencia es un reto. En este estudio se propuso un modelo 
de predicción de la calidad que combina el proceso jerárquico 
analítico (AHP), la memoria a corto y largo plazo (LSTM) y la 
autoatención múltiple (MHSA) para evaluar con precisión la 
calidad de las uniones de la tecnología UMW. El proceso UMW 
se analizó en cuatro etapas basadas en las operaciones de 
producción actuales, y se extrajo información característica 
a partir de los datos característicos del proceso muestreados 
por el equipo de inspección en línea. Se desarrolló un marco 
jerárquico basándose en los principios del AHP para dilucidar 
las interrelaciones entre los datos del proceso en tiempo real, 
las características del proceso y la calidad conjunta de la 
UMW. En este estudio se estableció un modelo de predicción 
de la calidad MHSA-LSTM-AHP aprovechando las ventajas de 
LSTM y MHSA en el aprendizaje de dependencias temporales. 
Se realizó un análisis comparativo utilizando la red neuronal 
de retropropagación optimizada por algoritmos genéticos 
(GA-BP) y los modelos LSTM-AHP para evaluar el rendimiento 
del modelo propuesto. Los resultados indican que el modelo 
propuesto funciona bien en la predicción de la resistencia a 
la tracción y la resistencia de contacto, con un error medio 
del 3,21 % y el 3,7 %, respectivamente. Este estudio puede 
proporcionar una referencia satisfactoria para la construcción 
de un sistema de control de calidad en línea y la optimización 
del proceso UMW.

• �Palabras clave: Soldadura ultrasónica de metales, modelo de 
predicción, memoria a corto y largo plazo, proceso jerárquico 
analítico, autoatención múltiple.
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ed States Council for Automotive Research) in 2016 [6]. In the 
specification, tensile strength testing is conducted on weld joints 
to evaluate their mechanical properties, and contact resistance 
testing is performed to assess their electrical properties. Neverthe-
less, quality assessment methods are destructive and not suitable 
for actual manufacturing processes [7-8]. Thus, in research com-
munities, growing emphasis is being placed on the development 
of reliable mathematical models to predict the quality of UMW 
joints, coupled with the implementation of nondestructive evalu-
ation techniques.

Although the existing studies established foundational frame-
works for quality prediction [9], the practical utility of such 
frameworks remains constrained by their limited accuracy under 
dynamic manufacturing conditions. Advancements in sensor tech-
nology have enabled the acquisition of high-resolution process 
data, which exhibit complex nonlinear relationships with weld 
quality outcomes. The incorporation of such parameters as input 
makes quality prediction models highly effective but complex. 
Thus, critical challenges lie in the exploration of the relationships 
between sensor-derived features and final quality indicators and 
the development of a robust model to accurately capture the in-
terdependencies among the parameters in the UMW process to 
improve joint quality prediction.

This study extracts critical features from sensor signals and 
proposes a novel relationship model that links UMW parameters to 
joint quality. The model integrates the Analytic Hierarchy Process 
(AHP), Multi-head Self-attention (MHSA), and Long Short-term 
Memory Network (LSTM). This study examines the performance of 
the proposed model by comparing it with existing models. The ob-
jective of this study is to illustrate the interdependencies among 
the parameters during the UMW process clearly and predict the 
weld quality accurately. By achieving the objectives, this study can 
provide a theoretical foundation and practical reference for the 
optimization of UMW quality and the precise control of the weld-
ing system. 

2. STATE OF THE ART
Current methods for UMW quality assessment can be catego-

rized into two approaches: mechanism analysis and data-driven 
approaches. Mechanism analysis typically relies on finite ele-
ment modeling software to simulate the welding process and in-
vestigate the impact of process parameters on the weld quality 
[10]. Shen et al. [13] developed a three-dimensional finite ele-
ment model to simulate the response of composite materials un-
der UMW conditions. The authors validated the model by using 
experimental data, including welding pressure, temperature, and 
weld geometry, which were measured during the actual welding 
process. Li Huan [14] used the ANSYS finite element software to 
examine the effect of the welding amplitude on UMW by obtain-
ing the plastic strain and temperature changes of the weld under 
different amplitude conditions. Simulation models can provide a 
satisfactory explanation of the physical welding process, but the 
establishment and validation of finite element models can become 
challenging when the weld conditions change. 

Meanwhile, data-driven approaches leverage large-scale 
welding experimental datasets to perform feature analysis and 
establish predictive models that link process parameters and 
measured factors to weld quality through advanced techniques, 
such as data mining and machine learning. Yao et al. [15] used 
the response surface methodology to examine the optimal UMW 
process parameters for copper wire and aluminum sheets. The au-

thors utilized a Box–Behnken design to perform the analysis and 
constructed regression models to optimize the welding param-
eters. Sarraf [16] used an artificial neural network to predict the 
strength of Cu-Al joints and employed pressure, the welding dura-
tion, and the vibration amplitude as the input parameters. Mon-
gan et al. [17] integrated genetic algorithms and neural networks 
to build a model for predicting the shear strength of UMW alumi-
num alloys and used the welding energy, amplitude, and clamping 
force as the input parameters and the peak power as the process 
feedback for closed-loop prediction. Although the methods dem-
onstrated predictive capabilities for weld quality under controlled 
conditions, they exhibit a critical limitation in practical UMW ap-
plication. The aforementioned studies focused predominantly on 
modeling the relationships between process parameters and weld 
quality but neglected the influence of dynamic and uncontrollable 
process state parameters that can significantly affect joint consis-
tency in industrial environments. 

With the advancement of sensor technology, high-precision 
sensors have been developed and applied to obtain welding pro-
cess characteristic information. Featured information has been 
derived from acquired sensing data, and data-driven approaches 
have been used in weld quality prediction. For instance, Lee et 
al. [18] identified the features of welding power and horn dis-
placement to predict joint quality, and Choi [19] extracted nine 
feature variables from energy and weld sonotrode displacement 
signals, including the peak, mean, and standard deviation, during 
the welding process. The author used the features to classify joint 
quality into three categories: sufficient welding, incomplete weld-
ing, and overwelding. Moreover, a support vector machine model 
was developed to classify weld quality, which achieved an impres-
sive accuracy of 98%. Guo et al. [20] performed complex feature 
selection and used the Statistical Process Control-M-distance al-
gorithm to classify poor welds in battery tab welding. Hong [21] 
analyzed power and Linear Variable Differential Transformer sig-
nals and used convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) to classify weld quality. The afore-
mentioned methods can predict joint quality types effectively but 
cannot determine quantitative quality indicators accurately, such 
as tensile strength and contact resistance.

Samir [22] utilized response surface methodology to estab-
lish the relationships between three UMW process parameters 
(welding pressure, time, and amplitude) and three measured fac-
tors (power, force, and energy) in aluminum alloy UMW. However, 
response surface methodology struggles to represent the highly 
nonlinear relationship between the process parameters and the 
measured factors accurately. Müller et al. [23] used sensors to 
obtain three signals during welding: mechanical vibration, the 
sonotrode penetration depth, and the internal welding power. 
The authors processed and converted the collected data into a 
random forest model to estimate the shear strength of the weld 
joint. In another study [24], the authors considered the difficulty 
of measuring external sensor data in industrial environments and 
measured only high-frequency power signals in a welding system. 
Various machine learning models have been used for quality pre-
diction, with the best-performing model achieving a root mean 
square error (RMSE) of 89 N. However, the models do not consider 
the varying effects of process parameters at different time se-
quences on the weld quality. Schwarz [25] analyzed signal curves 
from a welding machine, a sonotrode, and a welding table during 
the welding process and extracted over 700 features. The author 
conducted linear regression and multilayer perceptron regression 
to predict the tensile shear strength of the sonotrode, but the ex-
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tensive number of extracted features introduced overfitting risks 
in the prediction model. Chen [26] applied variational mode de-
composition and particle swarm optimization to extract sensor vi-
bration signals. Given the high-frequency nature of vibration sig-
nals and the low-frequency characteristics of power and pressure 
signals, the author developed a spectrum-customized denoising 
diffusion probabilistic model to generate time-series data. Sub-
sequently, the author employed a 17-layer MobileNetV2 network 
to establish a UMW quality prediction model. However, the author 
did not consider the strong coupling between the vibration signals 
and the power signals, which complicated the model’s computa-
tional process. Wu et al. [27] proposed a novel end-to-end online 
UMW quality prediction method based on sensor fusion and deep 
learning algorithms. The authors used discrete wavelet transform 
to convert UMW process signals into two-dimensional images and 
obtained 200 experimental samples. Then, the authors used the 
samples to train a ResNet20 model, which achieved an R² value of 
0.43. Nevertheless, the extracted features did not undergo stage-
specific analysis, which rendered them inadequate to represent 
the complete welding process precisely.

The aforementioned achievements encompass studies on the 
correlation between UMW quality and process parameters, as well 
as interrelationships among process parameters. However, several 
issues remain unresolved. UMW is a multistage sequential pro-
cess, and the parameters in each stage can influence the weld 
quality. Research on the relationship between process parameters 
and the weld quality in each individual stage is lacking. In ad-
dition, the features selected for weld quality prediction models 
are highly complex, and coupling relationships between sensor-
derived features and process parameters have yet to be considered 
adequately. The gaps highlight the need for focused and nuanced 
approaches to fully understand and optimize the UMW process.

To address the above issues, first, this study analyzes the pro-
cess parameters in each UMW stage, as well as the actual pro-
duction situation. Second, this study uses external sensors to 
extract the characteristic information, such as temperature and 
the displacement of the sonotrode, in each stage. Third, this study 
employs the hierarchical concept of the AHP to represent the non-
linear relationships between the process parameters, the process 
characteristic data, and the weld quality indicators. Fourth, this 
study introduces the LSTM neural network to solve the problem 
of dependence of long-distance time-series data. Fifth, this study 
uses MHSA to evaluate the weights of different time-series posi-
tions and enable the model to focus on the process parameter fac-
tors in each stage that can impact the weld quality and improve 
the weld quality prediction accuracy. Last, this study develops an 
MHSA-LSTM-AHP model that can clearly express the time-series 
relationships between the process parameters, the process char-
acteristic data, and the quality indicators to accurately predict the 
weld quality.

The remainder of this study is organized as follows: Section 
3 analyzes the UMW process and introduces the proposed UMW 
weld quality prediction model, Section 4 presents the training 
of the proposed predictive model by using welding experiment 

samples and compares the model with other predictive models 
to evaluate its efficiency and performance, and Section 5 sum-
marizes the findings and relevant conclusions.

3. METHODOLOGY 

3.1. UMW PROCESS
A real UMW process can be segmented to four stages as shown 

in Fig. 1. The features of the sensor signals used in each stage 
are analyzed to comprehensively investigate the influence of the 
process parameters in each UMW stage on the final weld quality.

Initial Contact Stage
During the initial contact stage (Fig. 1a), under the action of a 

cylinder, the sonotrode of the welding equipment applies a certain 
amount of pressure to the workpiece placed underneath to bring 
the upper and lower metal workpieces in close contact. Pressure is 
maintained until the pressure-holding phase ends. In this period, 
the key process parameter is the clamping pressure magnitude, P.

Ultrasonic Vibration Stage
During the ultrasonic vibration stage (Fig. 1b), the ultrasonic 

generator generates high-frequency electrical signals, which are 
converted into mechanical vibrational energy by a transducer. 
Then, the booster amplifies the vibration amplitude and transfers 
the energy to a sonotrode. The main parameters that can affect 
the weld quality in this stage are the set amplitude C1, power W1, 
and welding time T1.

Pressure-holding Stage
During the pressure-holding stage (Fig. 1c), the ultrasonic vi-

bration ceases. Nevertheless, the sonotrode maintains constant 
pressure on the workpiece. Under the continuous pressure, the 
welded joint gradually cools and solidifies, giving rise to a stable 
solid-state connection. Throughout this stage, the clamping pres-
sure remains constant, and the pressure-holding time T2 exerts an 
influence on the weld quality.

Post-welding Stage
During the post-welding stage (Fig. 1d), slight vibration is typi-

cally applied to the sonotrode after the pressure-holding stage to 
prevent the workpiece from sticking to the sonotrode. This vibra-
tion can break the possible micro connections between the work-
piece and the sonotrode and thus enable their separation. This 
stage is similar to the ultrasonic vibration stage, and the main 
parameters are the set amplitude C2, power W2, and post-welding 
treating time T3.

The process parameters in each stage can be expressed as fol-
lows:

 (1)

In UWM production, engineers will set appropriate process pa-
rameters to suit specific materials and dimensions. This includes 
setting the center frequency of the transducer on the welding 
machine and the dimensions of the welding head, among other 
relevant parameters. Throughout the production process, the real-
time process data is collected using real-time Data Acquisition 
Devices (DAQ), which log the actual production process data. 

To ensure the rationality of the production process parameters, 
the in-line inspection equipment such as the infrared thermography 
and the laser displacement tester are generally employed to measure Fig.1. Stages of UMW Process.
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the process characteristic data such as the amplitude of the welding 
head, the downward displacement, and the workpiece temperature 
during the welding process. To collect the process characteristic 
data, the laser displacement sensor KEYENCE LG-K5001 was used 
to measure the amplitude of the welding head and its downward 
displacement, and the infrared thermometer GAODE IPT640M was 
used to measure the temperature of the weldments. The general 
variation trends of the three types of process characteristic data are 
shown in Fig. 2 (see section: supplementary material). 

The displacement depth exhibits a trend of rapid increase, slow 
increase, and rapid decrease. The rapid growth is caused by the 
rapid downward movement of the sonotrode under the pneumatic 
device, and the peak depth value D1 in this stage is selected as a 
feature variable. Subsequently, the ultrasonic vibration energy in-
duces microscopic deformation in the metal, which leads to a slow 
increase in the sonotrode depth. For this stage, the peak value, 
the average value, and the standard deviation (D2, D3, D4) of the 
sonotrode depth are selected. During the pressure-holding phase, 
the sonotrode depth continues to rise slightly under the applied 
pressure, and the peak depth value D5 in this stage is selected. 

During the initial contact stage, in which the workpiece tem-
perature remains at ambient levels, the mean temperature E1 is 
identified as a key feature variable. Upon the initiation of ultra-
sonic vibration, the rapid temperature rise induced by frictional 
heating is characterized by the peak temperature, the mean tem-
perature, and the standard deviation (E2, E3, E4), which are se-
lected as the critical feature variables for the ultrasonic vibration 
stage. The temperature gradually declines after the cessation of 
the ultrasonic vibration. The mean temperatures (E5, E6) during 
the pressure-holding stage and the post-welding stage are de-
fined as the representative feature variables during the stages.

The amplitude signal of the sonotrode emerges only in the 
ultrasonic vibration stage and the post-processing stage, which 
exhibits a pattern of sharp increase, stabilization, and then sharp 
decrease. A strong correlation exists between the amplitude value 
information and weld quality. Therefore, the peak value named S1, 
the mean value S2, and the standard deviation S3 of the sonotrode 
amplitude in the ultrasonic vibration stage are selected as the fea-
ture variables. Similarly, for the post-processing stage, the peak 
value S4, the mean value S5, and the standard deviation S6 of the 
sonotrode amplitude are selected.

In the subsequent context, the eigenvalues extracted from the 
aforementioned process characteristic data are denoted as Z, as 
follows:

    (2)

After the welding process, the offline inspection equipment is 
used to inspect the quality indicators of the welded joints. According 
to [6], the joint tensile shear strength F and the contact resistance 
R are used to evaluate the weld quality, which are represented by Y.

(3)

3.2. PRINCIPLES OF QUALITY PREDICTION

3.2.1. Quality assessment based on AHP
During the UMW process, process parameters can determine 

the changes in the process characteristic data, and there is a high 

degree of coupling between them. As is known, the process char-
acteristic data is closely related to welding quality. However, in 
industrial production, due to cost considerations, existing welding 
systems typically do not measure the process characteristic data, 
which is crucial for subsequent optimization and precise control. 
For instance, when adjusting process parameters, it is necessary 
to ensure that process information parameters are within an ap-
propriate range based on the process characteristics. Therefore, 
when establishing a predictive model, in addition to considering 
the relationship between process parameters and welding quality, 
the relationship between the process data and the process char-
acteristic data must also be taken into account.

The hierarchical structure of the AHP [28-29] can enable the 
decomposition of the UMW quality assessment into three lay-
ers: objective, criterion, and alternative. The decomposition can 
clarify and simplify the dependency and coupling relationships 
between the factors at each level. The current process parameters 
will affect the process characteristic data in subsequent stages to 
varying degrees without affecting those in the preceding stages. 
Therefore, the X, Z, and Y extracted in Section 3.1 can be repre-
sented by the relationship shown in Fig. 3. 

3.2.2. LSTM
Although the model in Fig. 3 clearly shows the relationships be-

tween the variables in the three layers during the welding process, 
the traditional AHP struggles to handle high-dimensional data, 
such as X and Z. Thus, other advanced computational methods 
that can handle high-dimensional data and learn temporal depen-
dencies should be introduced to improve the structure. Commonly 
used methods include CNNs [30], RNNs, and LSTM [31]. Among 
them, LSTM is an RNN improvement and uses memory units to 
retain long-term information across a time series and discard use-
less information to effectively learn the temporal relationships in 
the high-dimensional data. The basic structure of an LSTM mem-
ory cell is shown in Fig. 4 (see section: supplementary material).

The memory cell consists mainly of the cell state tC , the input 
gate ti , the output gate tO , and the hidden state th , which interact 
with one another through sigmoid and tanh functions. The next 
section provides a detailed introduction to each component.

The forget gate is used to forget information selectively, which 
outputs a value between 0 and 1 through the sigmoid function, 
as follows: 

(4)

Where tx is the input vector,  denotes the hidden vector of 
the previous layer. fW and fb denote the weights and bias values of 
the inputs, respectively. 

The input gate is composed of two parts. The sigmoid function 
determines the values to be updated, whereas the tanh function 
creates a new candidate vector of values. The equations are as 
follows: 

(5)

Fig.3. Hierarchical Structure of the process parameters, the process 
characteristic data, and the weld quality.
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(6)

In which ti represents whether the value needs to be updated 
or not, and C indicates a vector of new candidate values that will 
be added into the LSTM memory.

The output gate is responsible for determining the part of the 
memory cell state to be outputted to the hidden state. The calcu-
lation equations are as follows:

(7)

(8)
Where tO is the output value, and th is its representation as a 

value between −1 and 1.
The update of the cell state tC is derived from the previous cell 

state  based on forgetting information tf and the information 
to be added ti .

(9)
Where tf  is the results of the forget gate, which is a value be-

tween 0 and 1 where 0 indicates completely get rid of the value; 
whereas, 1 implies completely preserve the value.

3.2.3. MHSA
As mentioned above, the self-attention mechanism can assess 

the contribution rate of different sample historical inputs to the 
output, according to the input data, and assign additional weights 
to the key feature information. When incorporated into a model, 
MHSA, which is a self-attention mechanism improvement, can 
enhance the prediction ability of LSTM [32] and determine the 
importance of each process parameter to the final weld quality 
and thus provide valuable insights for future process optimization. 
The calculation steps are described below.

As shown in Fig. 5 (see section: supplementary material), input 
X is mapped through three learnable parameter matrices, namely,

q
hW , k

hW  and v
hW , to obtain the query vector 

hQ , the key vector 

hK , and the value vector hV , where the subscript h represents the 
attention head index. Then, the dot product of Q and K is used to 
measure the similarity between the features. Subsequently, the 
softmax function is applied to the attention scores to calculate 
the attention weight, as follows:

(10)

Where iQ and iK  are matrices of queries and keys, kd is the 
vector dimension, which is used to control the magnitude of the 
dot-product result. Weight ia  is applied to vector iv to obtain the 
output of each head,

(11)
The outputs of all the heads are concatenated and transformed 

through the learnable output weight parameter matrix OW to ob-
tain the final feature representation.

(12)

3.3. MHSA-LSTM-AHP MODEL
By leveraging the strengths of the AHP in managing complex re-

lationships, along with the capabilities of MHSA and LSTM for time-
series prediction, this study introduces the MHSA-LSTM-AHP model 
for weld quality prediction. The model structure is shown in Fig. 6.

The model consists of seven layers, which are listed in Table 1.
A description of each component of the proposed model is 

provided below.
Data Input Layer: The input data consist of process parameters 

X in the form of , where M represents the number of 
samples, N denotes the time-series length, and dx is a feature 
dimension of 3.

Criterion Layer: The criterion layer comprises the process char-
acteristic data, which serves as the output layer for the process 
parameters and the input layer for the weld quality. The data of 
the layer have dimension , where zd  represents the 
maximum value that can be reached by the feature dimension in 
the process characteristic data, which is 9.

Self-attention Layer: The weights are calculated with the self-
attention mechanism to focus adaptively on the key information 
in the sequence. MHSA-1 performs an attention operation on the 
process parameters and input process parameters . 
During the calculation, zero vectors are used to pad the feature 
dimensions that are smaller than dx. After the calculation, a new 
feature X′ is obtained, with dimension . Similarly, Z is 
calculated for the process characteristic data .

LSTM Layer: LSTM neural networks are adept at processing 
time-series information and input vectors through recursive ex-
ecution, depending on the past hidden states and current inputs. 
LSTM-1 is used to learn the time-series dependencies between 
the process parameters and the process characteristic data. The 
establishment of the nonlinear relationship can help achieve the 
precise control of the welding process. LSTM-2 is used to learn the 
time-series dependencies between the process characteristic data 
and the output to predict the final quality. The number of hidden 
nodes in both LSTM layers is set to L.

Output Layer: The output layer predicts the weld quality, with 
an output dimension , where yd is 2.

MHSA-1

Output Layer

Criterion Layer

Input Layer

MHSA-2

X1

LSTM-1

Z1

LSTM-1 LSTM-1 LSTM-1

Y

LSTM-2 LSTM-2 LSTM-2 LSTM-2

Z2 Z3 Z4

X2 X3 X4

Fig. 6. Hierarchical Structure of MHSA-LSTM-AHP Model.

Table 1. Layers of MHSA-LSTM-AHP Model. 

No. Layer Data Dimension
1 Data Input Layer Process Parameters M×N×dx

2 MHSA-1 Weight Information M×N×dk1

3 LSTM-1 Hidden State N×L
4 Criterion Layer Process characteristic data M×N×dz

5 MHSA-2 Weight Information M×N×dk2

6 LSTM-2 Hidden State N×L
7 Output Layer Weld Quality M×dy
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4. RESULTS ANALYSIS AND DISCUSSION 
In this study, the process data was collected on the welding 

process of a battery’s terminal ears to validate the effectiveness 
of the model. The welding subjects are 40 layers of aluminum 
foil (single layer 12um) welded to a copper plate (0.8mm), with 
a welding head size of 16mm by 3mm. The set range of process 
parameters is: 50kPa < P < 150kPa, 16um < C1 < 28um, 1200w 
< W1 < 2500w, 0.2S < T1 < 0.8S, 0.1S < T2 < 0.4S, 4um < C2 < 
9um, 200w < W2 < 400w, 0.05S < T3 < 0.2S. Ultrasonic welding 
was performed using different combinations of process param-
eters. The resistance tester Xinyang Electronics CXT2516 was used 
to measure the contact resistance of the joint, and the micro-
computer-controlled universal testing machine MTS (CMT4304 
model) was employed to measure the tensile shear strength of the 
joint, with a tensile speed set at 1mm/min. As  the experiments 
in measuring the maximum tensile shear strength is destructive 
to the welded joints, 200 samples were collected and the k-fold 
cross-validation method was adopted to train and test the pre-
dictive model. Section 4.1 describes the training process of the 
model, Section 4.2 analyzes and validates the proposed model, and 
Section 4.3 compares the proposed model with other prediction 
models to evaluate its predictive performance.

4.1. MODEL TRAINING
The model training process is shown in Fig. 7 (see section: sup-

plementary material). The main steps are described below.
Data Processing: The sample data are normalized and divided 

into a training set, a validation set, and a test set.
Model Training: Weights are calculated layer by layer based on 

the AHP. The weights between the criterion layer and the output 
layer are calculated, followed by the weights between the input 
layer and the criterion layer. To mitigate the large fluctuations 
in the validation scores owing to the limited number of valida-
tion data points, k-fold cross-validation is employed for the model 
training.

K-fold Cross-validation: The dataset is partitioned into k parts 
of equal size. For each partition i, the model is trained on the re-
maining k-1 partitions and evaluated on partition i. The final score 
is the average of the score of all the partitions.

Model Loss Calculation: The RMSE is used as the loss function, 
which is calculated as follows:

(13)

Parameter Optimization: Gradient descent is used to adjust the 
model parameters until the loop termination condition is fulfilled. 
Once the process concludes, the optimal model parameters are 
saved for subsequent use.

This study compares the proposed model with the GA-BP Neu-
ral Network model [33-34] and the LSTM-AHP model without an 
attention mechanism to analyze the performance of the proposed 
MHSA-LSTM-AHP model in predicting the weld quality. The GA-
BP Neural Network, LSTM-AHP, and MHSA-LSTM-AHP models are 
implemented by using the MATLAB neural network toolbox. The 
training and testing procedures are executed on an Nvidia Ge-
Force RTX 3080 GPU platform with 12 GB of Video Random Ac-
cess Memory (VRAM). A dropout structure, with a dropout rate 
of 0.2, is introduced into the MHSA-LSTM-AHP model to prevent 
overfitting, which means that 20% of the neurons are randomly 
dropped during the training. The dropout rate of the self-attention 
mechanism is set to 0.2, and the number of heads is set to 3. 
The LSTM neural network has 16 hidden nodes and 2 hidden lay-
ers. The adaptive moment estimation optimizer, with a learning 
rate of 0.001, is leveraged for the error backpropagation. The data 
samples are divided into training, validation, and test sets, with a 
ratio 76:19:5 and a batch size of 16 and 100 training epochs. After 
multiple adjustments, the k-value of the cross-validation is set to 
5. The learning rate, number of iterations, and number of hidden 
layers in the two comparison models are the same as those in the 
proposed model. 

4.2. QUALITY PREDICTION BASED ON MHSA-LSTM-AHP 
MODEL

The RMSE curves of the training and validation sets for the 
tensile strength and contact resistance prediction during the 
training of the proposed MHSA-LSTM-AHP model are depicted in 
Fig. 8.

Fig. 8. RMSE Curves of Training and Validation Sets.

Table 2. Predicted and Actual Tensile Strength and Contact Resistance Values. 

No.
Tensile Shear Strength Contact Resistance

Predicted (MPa) Actual (MPa) Relative Error(%) Predicted (mΩ) Actual (mΩ) Relative Error(%)

1 10.271 10.813 5.01 0.052 0.051 1.96

2 6.854 7.292 6 0.057 0.06 5

3 13.458 13.333 0.94 0.04 0.042 4.76

4 12.083 12.333 2.03 0.049 0.049 0

5 9.437 9.125 3.42 0.052 0.053 1.89

6 9.895 9.625 2.81 0.053 0.051 3.926

7 11.271 11.709 3.74 0.044 0.046 4.345

8 9.146 9.334 2.01 0.046 0.049 6.12

9 8.688 8.355 3.99 0.058 0.056 3.57

10 11.625 11.376 2.19 0.052 0.055 5.45

Average Error 3.21 3.7
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The results indicate that the model completes the error iteration 
convergence process during the tensile strength and contact resis-
tance prediction training quickly and thus demonstrates excellent 
convergence performance. After 100 training epochs, the tensile 
strength and contact resistance RMSE value in the validation set is 
15.26 and 0.0027, respectively, which show small errors compared 
with the actual values. Although the convergence speed slows in 
the later stages of the training of the validation set, it continues to 
decrease and gradually stabilizes, which indicates that no overfit-
ting occurs and confirms the effectiveness of the model training.

Randomly selected 10 samples from the 200 samples were 
used as a test set to evaluate the predictive ability of the model. 
Table 2 presents the actual measured values of the maximum ten-
sile shear strength and contact resistance of the welding samples 
under different combinations of process parameters, as well as the 
predicted values calculated by the model. The comparison of the 
predicted and actual values is illustrated in Fig. 9.

Table 2 and Fig. 9 demonstrate that the MHSA-LSTM-AHP 
prediction model achieves an average relative percentage error of 
3.21% and 3.7% for tensile strength and contact resistance, re-
spectively. The data indicate that the predictions are close to the 
actual measurements, and the model has high predictive and gen-
eralization capabilities. However, the prediction error for contact 
resistance is slightly higher than that for tensile strength, which 
can be attributed primarily to measurement errors. Contact resis-
tance is small and requires high measurement accuracy, making it 
susceptible to factors such as the condition of the weld contact 
surface and the environmental interferences, which can reduce 
the accuracy of the model training. 

4.3. COMPARISON OF PREDICTION PERFORMANCE
To verify whether the introduction of MHSA into the LSTM-

AHP model can effectively improve its predictive ability for weld 
quality and analyze the performance of the proposed model, this 
study compares the quality predictions of three trained models, 
namely, the MHSA-LSTM-AHP, LSTM-AHP, and GA-BP Neural Net-
work models, by using the same test set. The tensile strength and 
contact resistance prediction results are shown in Fig. 10 and Fig. 
11 (see section: supplementary material).

The comparisons show that the tensile strength and contact re-
sistance values predicted by the MHSA-LSTM-AHP model are in best 
agreement with the experimental values, which demonstrate the 
model’s superior predictive ability. Although the prediction error of 
the LSTM-AHP neural network model increases to a certain extent, 
compared with the GA-BP Neural Network model, the LSTM-AHP 
neural network model demonstrates higher accuracy. In addition, 
the three models exhibit a more pronounced degree of deviation 
when predicting contact resistance compared with tensile strength. 
This phenomenon lends support to the hypothesis that the relatively 
large error in the resistance measurements is attributable to mea-
surement issues, rather than inherent flaws in the models.

To accurately evaluate the models, this study selects the mean 
absolute error(MAE), RMSE, and mean absolute percentage error 
(MAPE) to analyze the results of the validation set.

As shown in Table 3, in predicting tensile strength, the MAE, 
RMSE, and MAPE of the MHSA-LSTM-AHP model are 0.31, 0.336, 
and 0.032, respectively, which are lower than those of the LSTM-
AHP and GA-BP Neural Network models. Similarly, the errors are 
significantly reduced in the contact resistance prediction. More-
over, a substantial reduction can be seen in the errors when the 
model predicts resistance. The result demonstrates that the MH-
SA-LSTM-AHP model has superior prediction performance. 

In Comparison to the performance of the LSTM-AHP model, the 
MAE, RMSE, and MAPE of the proposed model decrease by 17%, 
13.4%, and 16.3%, respectively. Moreover, in the resistance pre-
diction, the values decrease markedly by 24%, 21.5%, and 24.7%. 
The results indicate that MHSA introduced into the LSTM-AHP 
model can considerably enhance the model’s predictive ability.

The errors of the GA-BP Neural Network, LSTM-AHP, and 
MHSA-LSTM-AHP models increase in the resistance prediction 
compared with those in the tensile strength prediction. However, 
the increase in the errors of the GA-BP Neural Network model is 
substantial. This result suggests that the LSTM-AHP and MHSA-
LSTM-AHP models, which are capable of learning temporal de-
pendencies, can extract substantial information and demonstrate 
superior robustness. The prediction error of contact resistance is 
decreased with incorporating MHSA, as this mechanism utilizes 
multiple independent attention heads to learn diverse representa-
tions of data from different subspaces. This allows the model to 
further learn key information between the process parameters and 
the quality indicators from more dimensions, thereby making it 
more robust to data noise or partial feature absence.

To better characterize the coupling relationship between pro-
cess parameters and quality in UMW process, this study establish 
an AHP-based hierarchical relationship among process parame-
ters, process characteristics, and welding quality. The LSTM units 
are utilized to learn the temporal relationships between parame-
ters and the final welding quality indicators throughout the weld-
ing process. Moreover, the model integrates the MHSA mechanism 
to enhance its predictive capabilities across various dimensions. To 
scientifically validate the proposed model, this study conducted 
training, learning, and comparative analysis. The results indicate 
that our model possesses relatively high predictive accuracy.

5. CONCLUSION 
To investigate the relationship between the process param-

eters in each stage and the final joint quality in the UMW process, 
this study conducts a detailed analysis of the process parameters 

Table 3. Performance of Each Model. 

Algorithm Type MAE RMSE MAPE

Tensile 
Strength

MHSA-LSTM-AHP 0.31 0.336 0.0321

LSTM-AHP 0.38 0.389 0.0384

GA-BP Neural Network 0.52 0.543 0.0533

Contact 
Resistance

MHSA-LSTM-AHP 0.0019 0.0021 0.0370

LSTM-AHP 0.0025 0.0027 0.0492

GA-BP Neural Network 0.0034 0.0036 0.0679

Fig. 9. Comparison of Predicted and Actual Values Based on MHSA -LSTM-AHP 
Model.
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and process characteristic data during the welding process. By le-
veraging the AHP, this study clearly delineates the hierarchical 
and sequential structures between each process parameter and 
the weld quality during the welding process. By using the LSTM 
and MHSA methods, this study establishes an MHSA-LSTM-AHP-
based quality prediction model to accurately predict the weld 
quality of UMW. Furthermore, this study conducts a comparative 
analysis between the proposed model and other quality prediction 
models and draws the following conclusions:

(1) Compared with traditional prediction models, the proposed 
MHSA-LSTM-AHP model achieves smaller errors when predicting 
tensile strength and contact resistance and thus demonstrates 
higher prediction accuracy.

(2) The integration of MHSA into the LSTM-AHP model can sub-
stantially improve the model’s weld quality prediction accuracy.

(3) By utilizing the memory units of LSTM and the multi-head 
mechanism of MHSA to capture the dependency relationships be-
tween process parameters and quality indicators from multiple 
dimensions, the proposed model demonstrates strong robustness 
during the prediction of contact resistance, which is a small nu-
merical value and is deeply influenced by the condition of the 
weld contact surface.

The research results contribute to UMW systems that can 
achieve the online prediction and evaluation of weld quality, 
which can be used to provide a reference for the optimization 
of UMW process parameters in the production of key electronic 
components.
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