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Analysis on directional feature 
extraction for the target identification 
of shallow subsurface based on curvelet 
transform
Análisis de extracción de función direccional para la identificacion de objetos a 
baja profundidad en el subsuelo basado en transformada curvelet

ABSTRACT
Feature extraction is the key for detecting and identifying 

subgrade shallow targets of railways through ground-penetrating 
radar (GPR). Obtaining the appropriate feature to recognize sub-
surface targets is difficult due to the complication of subsurface 
structures and the diversity of target echoes. To identify those tar-
gets effectively and efficiently, this study proposes an energy sta-

tistical feature extraction method based on the directional feature 
of a target echo. Directional models of a typical target echo of 
shallow subsurface were initially built. The directional feature of 
different target echoes was discussed. The direction of the hyper-
bolic asymptote and horizon were the major directional features 
in the target echo. A target classification method based on echo 
direction was summarized. On the basis of the analysis of the re-
lationship between curvelet coefficient and statistical features of 
energy in different directions, a feature extraction method was 
presented to form a feature vector subspace. Finally, target classi-
fication and recognition were achieved using the nearest neighbor 
method. Results show that the proposed method can effectively 
identify the preinstalled void disease of railway subgrade. The 
detection accuracy met the requirements of the roadbed disease 
identification of railways. The method used in this study was in-
sensitive to the echo phase, and was suitable for detecting 0° and 
180° phase target echoes. The proposed method provides a new 
means of identifying railway subgrade diseases and is significant 
in developing automatic technology for subsurface target detec-
tion based on GPR.

Keywords: Ground-penetrating radar, Directional feature, 
Curvelet transform, Nearest neighbor method, Railway subgrade 
diseases.

1. INTRODUCTION 
Ground-penetrating radar (GPR) is widely used in detecting 

the subsurface target in civil infrastructure, archaeology, and mili-
tary [1-4] for its rapid, continuous, and non-destructive proper-
ties. However, GPR dataset is large, and relying on the experience 
of technical staff in determining subsurface targets is inefficient. 
For example, the operating mileage of high-speed railway in China 
has exceeded 20,000 km by the end of 2016; in detecting diseases 
inside the high-speed railway, results identified more than 100 
million traces using GPR. Identifying subsurface diseases manu-
ally is challenging. Moreover, having inexperienced technical staff, 
fatigue and other factors will cause low efficiency, and missed 
and false alarm, which is unconducive for repair and maintenance 
work. Therefore, automatic effective detection and identification 
technology are the development trend of GPR.

Feature extraction is the foundation of target identification. A 
wide variety of targets exist in subsurface, such as pipes in civil 
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RESUMEN
• �La extracción de imágenes es clave para detectar e identificar 

objetivos someros del firme en ferrocarril por medio del 
georadar (GPR). Obtener imágenes apropiadas para reconocer 
objetivos subsuperficiales es difícil, debido a la complejidad 
de las estructuras sub-superficiales y la diversidad de ecos 
de objetivos. Para identificar esos objetivos con eficacia y 
eficiencia, este estudio propone un método para extracción 
de imagen estadístico de la energía basado en la imagen 
direccional del eco del objetivo. Se crearon inicialmente 
modelos direccionales del eco de un objetivo típico de 
subsuperficies someras. Se discutió la imagen direccional 
para diferentes ecos de objetivos. La dirección de la asíntota 
hiperbólica y del horizonte fueron las mayores imágenes 
direccionales del eco de objetivo. Se concluyó con un método 
de clasificación de objetivos basado en la dirección del eco. 
En base al análisis de la relación entre el coeficiente de 
Curvelet y la imagen estadística de energía en diferentes 
direcciones, se presentó un método de extracción de imagen 
para formar un vector sub-espacial de imagen. Finalmente, la 
clasificación y reconocimiento de objetivos se consiguió usando 
el método del vecino más próximo. Los resultados muestran 
que el método propuesto puede identificar efectivamente 
los problemas de huecos pre-introducidos en el firme de 
ferrocarriles. La precisión de la detección cumple los requisitos 
para la identificación de defectos en las vías de ferrocarriles. 
El método utilizado en este estudio no era sensible a la fase 
eco y era adecuado para detectar ecos de objetivos a 0º y 180º 
de la fase. El método propuesto facilita nuevos medios para 
identificar defectos en firmes de ferrocarril y es significativo 
para desarrollar una tecnología automática para la detección 
de objetivos sub-superficiales basada en GPR.

• �Palabras clave: Radar de penetración en el suelo, georadar, 
Imagen direccional, Transformada de Curvelet, Método del 
vecino más próximo, Defectos en el firme de ferrocarriles.
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infrastructure, layer information in archaeology, and void diseases 
in reinforced concrete (RC). The features of target echoes differ in 
amplitude, phase and directions, because various materials possess 
different properties. Moreover, the crosstalk between the transmit-
ting and receiving antennas, multiple wave, strong reflection of re-
bar, and background medium anisotropy clutter interference cause 
the GPR echo signal to show different features in time-frequency 
domain, which heightens the difficulty of detection. Thus, efficient 
extraction of target echo feature should be the focus in identifying 
and classifying subsurface targets.

This study focuses on the directional feature of target echoes, 
and proposes a new algorithm based on curvelet transform (CT) to 
extract target echo features and identify the target in a GPR map.

2. STATE OF THE ART
GPR was first used by Hülsmeyer in 1904 for the detection of 

metal objects [5]. Various methods have been presented by schol-
ars to extract target features. According to different principle of 
data processing, those methods can be divided into two catego-
ries: image-based and echo signal-based methods.

Image-based methods regard GPR map as an image and pro-
cess target echoes using digital image processing algorithm. Long 
and Simi [6-7] extracted the hyperbolic feature using least squares 
and Hough transform (HT) to detect underground mines and pipes. 
Wang et al. [8] improved the HT and proposed a fast HT algorithm. 
Freeland [9] proposed a texture feature-based method in energy, 
contrast, entropy, and homogeneity, and constructed the neural 
network classifier to categorize interlayer radar echo targets. Nath 
and Bhuiyan [10] used grayscale morphology for gradient extrac-
tion, contrast enhancement, and region segmentation (watershed 
algorithm), as well as noise removal and smoothing, which were 
combined with an infrared sensor to detect buried anti-personnel 
mines. Currently, numerous image processing algorithms can be 
used to process GPR maps. However, when radar signal converts to 
image signal, weak echo signals, such as void disease echo under-
neath a rebar, are easy to overlook due to the finite length of the 
space in each pixel, which restricts its promotion.

Echo signal-based methods extract target echo features from 
A- or B-scan data. Xie et al. [11] simulated void diseases in RC 
structure through finite-difference time-domain (FDTD) [12-13] 
preprocessed by predictive deconvolution and identified diseases 
beneath a rebar using support vector machine. Reichma et al. [14] 
proposed a Wiener inverse filtering method to extract features and 
recognize a target through singular value decomposition. Cui et 
al. [15] used GPR to detect sandy loam in the west of China, and 
presented autoregressive moving average power spectrum to esti-
mate moisture contents and compactness values. However, given 
the complexity and uniqueness of the railway subgrade structure, 
multilayer rebar exists in ballastless track; thus, these methods 
cannot be applied to detect subsurface diseases.

The recent development of multiscale geometric analysis 
(MGA) based on wavelet provides a new idea for the extraction of 
directional features. Tzanis [16] proposed the CT to enhance echo 
signals and extract directional information. Zhang [17] used the 
ridgelet transform to suppress direct waves. In those cases, the 
MGA algorithm was always used for noise suppression but seldom 
used for identification and classification. 

Thus, in this study, the directional features of a GPR echo sig-
nal are analyzed, and a new feature extraction method is proposed 
to construct a feature vector subspace and identify subsurface 
targets. The rest of this paper is arranged as follows. Section 3 

presents a target echo directional model, and a feature space 
based on CT domain and utilizes nearest neighbor (NN) [18-19] 
method to classify targets. Section 4 discusses the process result 
using forward simulation and field experiment, and analyzes fac-
tors that affect feature distribution. Section 5 presents the rel-
evant conclusions.

3. METHODOLOGY

3.1. TARGET ECHO DIRECTIONAL MODEL
Point target (PT, e.g., rebar) and body target (BT, e.g., cuboid) 

are the typical forms in subsurface structure. This section focuses 
on PT and BT in constructing echo models and analyzes the direc-
tional features in a GPR map.

(1) PT echo model
The PT represented by rebar and pipes is important in detecting 

subsurface targets using GPR. Fig. 1(a) shows the PT echo model, 
with rebar as an example, x represents the horizontal axis; t or z 
represents the vertical axis, t=z/v; and v is the velocity of electro-
magnet in the background medium. The black rectangles represent 
GPR antennas (transmitter/receiver antennas). The background 
medium parameters are εr, μr, and σ, where εr denotes the relative 
permittivity, μr denotes the relative permeability, and σ denotes 
conductivity.

Given that the background is a low-loss medium, the velocity 
is constant ( , where c is the speed of light). The inter-
section point of the vertical line passing through the rebar and 
air-ground interface is the coordinate origin (0, 0), and the survey 
direction x is the horizontal coordinate, and the vertical down-
ward direction t/z is the vertical coordinate. When the antenna 
is at (0, 0), the two-way travel time is t0; when the antenna is at 
(x, 0), the two-way travel time is t. In GPR, the measured data in 
a certain position are generally called A-scan, and the measured 
data along the survey direction are called B-scan. Given that func-
tion f(x, t) in 2D space can be expressed as

(1)

then the BT echo hyperbola can be written as a Dirac delta 
function, as shown as follows:

(2)

According to Maxwell equation, the electromagnetic (EM) 
field decays exponentially with increasing distance when the EM 
wave propagates in free space.

(3)

Fig. 1: GPR echo model (a) Rebar (b) Void
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where E0 denotes the amplitude when z=0, and the size of 
amplitude associates with GPR antenna power; α denotes the at-
tenuation coefficient, ; and β denotes the phase 
factor,  .

In low-loss medium, the parameters satisfy s ≤ we and 
; thus, the phase velocity is approximately equal in all 

frequencies and there are only differences in amplitude between 
different position of target echo signals. Given that the echo at-
tenuation function is γ, when the target location is fixed, γ is a 
function of x (γ=γ(x)), and wavelet is w(t), then the GPR echo Q(x, 
t) can be expressed as a convolution between d{f(x, t)} and at-
tenuation wavelet γ(x)w(t) considering time t is

(4)

On the basis of the above analysis, the PT echo signals in GPR 
map show evident directional properties, which are close to the 
curve asymptote when x tends to be infinite.

(2) BT echo model
The BT represented by void diseases is also important in sub-

surface structure. Fig. 1(b) shows the banded void echo model. In 
this case, given that the length of void is lV, the intersection point 
of the vertical line passing through the middle point of the void 
and air-ground interface is the coordinate origin (0, 0), and the 
rest of the settings is the same as the PT echo model.

Similar with Eq. (1), given that the function g(x, t) in 2D space 
can be expresses as

(5)

then the void BT echo equation can be written as a Dirac delta 
function, as shown as follows:

(6)

Similar with Eq. (4), GPR echoes P(x,t) can be expressed as a 
convolution between d{g(x,t)} and attenuation wavelet γ(x)w(t) 
considering time t. 

(7)

Fig. 1(b) and Eqs. (5) and (6) prove that the echoes on the left 
and the right edges are the same as the part of PT echo in Fig. 1(a), 
and that the middle part of the echoes are horizontal.

3.2. DIRECTION CLASSIFICATION OF SUBSURFACE TARGET
According to Section 3.1, direction is an important feature 

in GPR target echo. However, the subsurface structure is com-
plicated. For example, several diseases exist in the railway sub-
grade, such as frost boiling and mud pumping, as well as ballast 
subsidence. And sometimes all the echoes of one disease may not 
be displayed in a processing window; thus, on the basis of echo 
directional feature, subsurface targets can be divided into five 
categories: nontarget (NT), PT, finite BT (FBT), infinite BT (IBT), and 
half-infinite BT (HIBT).

(1) �NT: Without a target echo, B-scan data only contain noise 
signal. For example, GPR echo signals are only composed 

of medium anisotropy echo, which is caused by the uneven 
mixing of concrete aggregates.

(2) �PT: When the target vertical cross-sectional area is very small, 
the distance between the antenna and every point on the tar-
get can be regarded as a fixed value. Then, the target is called 
PT. For example, the diameter of a rebar in a ballastless track 
is considerably small. The diameter of the upper pre-stressing 
tendon is Φ=10 mm in CRTS-II slab ballastless track. A hyper-
bolic feature of the echo is relatively clear, and the horizontal 
part is limited. Here, the rebar can be called a PT.

(3) �FBT: When the horizontal part of the target echo is rela-
tively long, but all the echoes can still be included in a 
processing window (Fig. 1(b)). These targets include void 
diseases of concrete-asphalt (CA) mortar in a ballastless 
track structure, frost boiling, and mud pumping diseases in 
a ballast track structure.

(4) �IBT: When the length of the target is sufficiently large, only 
the horizontal part of the echoes exists in a processing 
window, such as the interface echo of the subgrade top 
and bottom layers. 

(5) �HIBT: When the length of the target is between FBT and 
IBT, the parts of the edge and horizontal echoes exist in a 
processing window. According to the different side echo 
signals detected by GPR, HIBT can be divided into HIBT left 
(HIBTL) and HIBT right (HIBTR). The left represents entrance 
direction, and the right represents departure direction.

As shown in Fig. 2, different types of target echo exist in dif-
ferent directions. Fig. 2(a) for NT echo is composed of a noise sig-
nal without a directional feature. Fig. 2(b) for PT echo shows a 
hyperbolic feature, which is consistent with the direction of the 
asymptote. Symmetry distribution exists in the position of a PT. 
Fig. 2(c) for FBT echo shows a part of the hyperbolic feature at the 
edge with the directions of the asymptote and the horizon in the 
middle part. The length of the horizontal part concerns with the 
length lV of the target. When l

v
0, the type of the target changes 

from FBT to PT; when l
v

∞, the type of the target changes from 
FBT to IBT. Fig. 2(d) for IBT echo shows a horizontal direction, 
which is the same as the middle part of the FBT echo. Fig. 2(e) 
for HIBTL shows the left part of the hyperbolic feature with the 
direction of the asymptote and the horizontal part with the direc-
tion of the horizon. Fig. 2(f) for HIBTR shows the right part of the 
hyperbolic feature with the direction of the asymptote and the 
horizontal part with the direction of the horizon.

3.3. DISCRET CT (DCT)
CT is an MGA method proposed by Candès and Donoho et al. 

[20-23]. This method overcomes the limitation of the wavelet 

Fig. 2: Different target echoes in B-scan
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transform in 2D image singular analysis. The development process 
of CT has experienced ridgelet transform [20], particularly the first 
and second generations of CT [21-23]. The current study focuses 
on the second-generation CT.

According to Radon transform (RT) [24-25] and projection 
slice theorem [26], the RT and 2D Fourier transform (2D-FT) can 
be written as

(8)

(9)

where Rf(θ, t) denotes the RT of f(x1, x2), which indicates the 
line integral of the function f(x1, x2) with direction θ and intercept 
t. F(u, v) denotes 2D-FT. The relationship between RT and 2D-FT 
can prove that the 1D inverse FT (IFT) in direction θ is the RT. Thus, 
the projection in a certain direction in the 2D-FT space also re-
flects the feature of the corresponding direction in the 2D space-
time domain. On this basis, the ridgelet transform and the first-
generation CT are proposed according to the multiscale wavelet 
transform of the line integral in a certain direction. 

In 2002, Candès and Donoho [21] proposed the second-gener-
ation CT based on radial window Wj and angular window Vl.

(10)

where c(j, l, k) denotes the curvelet coefficient; j, l, and k de-
note scale, direction, and translation, respectively, k=(x1, x2); jj, l,k 
denotes the “mother” curvelet; and the superscript “*” denotes the 
conjugate.

In 2005, Candès and Donoho et al. [22] utilized the Cartesian 
coordinate to replace the polar coordinate, built the discrete CT 
(DCT), and proposed two digital implementations: unequally spaced 
fast Fourier transforms and swapping. DCT is shown as follow:

(11)

where cD (j,l,k) denotes discrete curvelet coefficient, jD
j, l,k is the 

discrete “mother” curvelet, and the superscript D denotes digital. 
Fig. 3 (see section: supplementary material) presents the time-

frequency feature of CT. In Fig. 3(a), a multiscale decomposition 
is shown in a Cartesian coordinate in frequency domain. In this 
figure, the data matrix size is (256, 256), and according to CT, the 
data can be divided into five layers: coarse layer, Scales 2-4, and 
the finest layer. The coarse and the finest layers represent low and 
high frequencies, respectively, and Scales 2-4 represent detail lay-
ers in middle-high frequencies. The directional resolutions of the 
coarse and finest layers are both one, those of Scales 2-4 are 16, 
32, and 32, respectively. The colored part in Fig. 3(a) denotes the 
middle- and high-frequency bandpass filters, where θ=p/4 (l=8) 
in Scale 3. Fig. 3(b) presents a detailed 3D graphics of the colored 
part of Fig. 3(a). Fig. 3(c) shows the directional resolutions of the 
coarse layer, and Scales 2 and 3.

3.4. FEATURE EXTRACTION OF GPR TARGET ECHO
In Sections 3.1 and 3.3, the directional feature of GPR target 

echo and the sensitive direction of CT have been studied. Accord-
ing to Eq. (13), cD (j,l,k) represents coefficient in scale j, direction l, 
and translation k, and mother curvelet jD

j, l,k (x1, x2) is orthogonal. 
Thus, based on frame theory and Parseval theorem, the 2D GPR 

map of the B-scan f(x1, x2) can be written as follows:

(12)

Therefore, the sum of cD (j,l,k) in different translation positions 
K (k1, k2)denotes energy statistical feature in scale j and direction l.

(13)

where sj,l represents the energy statistical feature in j and l.
The five types of target echo are processed by CT, and the en-

ergy statistical feature is shown as follows.

(1) NT echo feature
In NT echo, the GPR map is only composed of medium an-

isotropy echo, which is caused by the uneven mixing of concrete 
aggregates. Generally, the medium parameters of uneven mixing 
follow the Gaussian distribution [27]. The 2-dB white Gaussian 
noise is used to replace the NT echo with echo data matrix size 
(200, 200). Then, the CT turns the matrix into five layers in the 
frequency domain, namely, coarse layer, Scale 2-4, and the fin-
est layer. In the coarse and finest layers, the directional resolu-
tions are both one, which implies that the IFT result represents 
all the directions within [−p, p]; thus these parts are ignored in 
this study. Fig. 4 (see section: supplementary material) shows the 
curvelet coefficient summary in different scales and directions, 
and the statistical distributions of energy in different scales and 
directions still follow random distribution. The directional resolu-
tions of Scales 2-4 are 16, 32, and 32, respectively. Interpolation 
is performed on Scale 2 to compare the energy distribution of dif-
ferent scales and directions in one figure.

 (2) PT echo feature
In PT echo, given that background medium parameters are (er, µr, 

s)=(6,1,0.1), and rebar is PT. FDTD and finite element methods [28] 
are often used for data simulation. In this study, software gprMax 
[29-30] based on FDTD is used for forward simulation with echo 
data matrix size (200, 200). Then, the echo data are processed by 
CT, and the statistical feature of the energy is obtained in different 
scales and directions. Fig. 5(a) shows the simulation result, where 
the long axis of the ellipse represents the direction. Energy is mainly 
concentrated in the direction of the hyperbolic asymptote.

Fig. 5(b) shows the statistical feature of the energy on Scales 
2-4, where the energy is mainly concentrated in directions 
l={11,12,13,14,27,28,29,30}. The angle θ corresponding to the 
directions is θ  [-5p/8,-3p/8]U[3p /8,5p/8].

(3) IBT echo feature
The feature of IBT echo is similar with that of PT echo, except 

that a different medium layer is regarded as IBT. 
Fig. 5(c) shows the simulation result with echo data matrix 

size (200, 200). Fig. 5(d) shows the statistical feature of the energy 
in Scales 2-4, where the energy is mainly concentrated in direc-
tions l={4,5,20,21}. The angle θ corresponding to the directions is 
θ  [-p/8,p/8]U[7p /8,9p/8].

(4) Other types of target echo feature
According to the above analysis, PT and IBT echoes possess 

directional features in the statistical distribution of energy based 
on CT; the distribution maintains consistency with different scales. 
However, in Fig. 5(b), more information is represented on Scale 3, 
with the energy attenuation in directions l={12,13,28,29}. Thus, 
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for FBT and HIBT, only the statistical feature of energy on Scale 3 
is considered. As shown in Fig. 6, normalization is performed to 
analyze the direction in the same proportion.

(14)

The FBT echo energy is mainly concentrated in directions  
l={4,5,20,11,12,13,14,27,28,29,30}. The angle θ correspond-
ing to the directions is . 
Similar with the Scale 3 on Fig. 5(b), the energy attenuates in 
directions l={12,13,28,29}, where directions l={4,5,20,21} and 
l={11,12,13,14,27,28,29,30} represent the energy of the horizon-
tal and edge parts, respectively.

The energies of the HIBTL and HIBTR echoes are mainly con-
centrated in directions l={11,12,13,14,27,28,29,30}. The distribu-
tion is essentially consistent with the PT echo but is not symmetric 
in . By contrast, the energy distributions of HIBL and HIBR 
are symmetric in .

The energy contribution of different targets in circumferential 
phase [−p, p] is shown in Fig. 7 (see section: supplementary material).

3.5. TARGET CLASSIFICATION
The statistical features of the energy of different targets 

gained by the CT on Scale 3 form a 32-dimension vector subspace, 
and the feature in each target is a point in the subspace

(15)

where superscript T represents vector transpose, j=3, l=1,2…, 
32, i=1,2…, 6, and i represents NT, PT, IBT, FBT, HIBTL, and HIBTR, re-
spectively. Matrix S={S

1
, S

2
,…,S

6
} consists of feature subspace. For 

NT, directional feature does not exist on all scales; thus, S
1
=(0,0,…, 

0), which is the origin point in the 32-dimension subspace.
A partition of the six-feature vector in a subspace based on NN 

is shown in Fig. 8 (see section: supplementary material).
Given that the unknown GPR echo sample is C, the feature 

vector of C on Scale 3 is Sx. Then, the distance between Sx and Si 
can be expressed as follows:

(16)

According to NN, sample C belongs to classification i, where

(17)

The algorithm flow based on directional feature extraction and 
recognition is shown as follows:

(1) �The relative permittivity of background medium εr is de-
termined;

(2) �According to εr, models based on the six types of target are 
constructed, and forward simulations are executed;

(3) �Feature vectors S
1 
on Scale 3 are formed using CT, and sub-

space {S
1
}, i=1… 6 is built;

(4) �GPR echo sample C is obtained on the basis of detection;
(5) �Preprocessing is performed to depress the direct wave etc., 

and echo C changes to C1;
(6) �CT is processed on C1, and feature vector Sx is achieved;
(7) �NN algorithm is executed to realize the classification ac-

cording to Eqs. (16)and (17).

4. RESULT ANALYISIS AND DISCUSSION

4.1. EXPERIMENT
To verify the proposed algorithm, void diseases in RC structure 

were concerned in this study, and a field experiment was con-
ducted at the No. 2 Project of the Engineer Training Center in 
Shijiazhuang Tiedao University. The preinstalled void disease is 
composed of polystyrene foam with 20 cm length, an RIS-K2 sys-
tem constructed by IDS (Ingegneria dei Sistemi SpA, Italy) is used 
with 900 MHz antenna. The disease arrangement, detection, and 
processing result are shown in Fig. 9 (see section: supplementary 
material).

Fig. 9 (d) reveals the statistical feature of the energy on Scale 
3; the NN classification method is processed. Result is shown 
in Fig. 10 that the shortest distance exists between the feature 
vector of sample echo and that of the simulated FBT echo with 
d=0.067, which is consistent with the preinstalled diseases. 

4.2. INFLUENCE OF RELATIVE PERMITTIVITY ON THE 
FEATURE

For PT, FBT, and HIBT, the direction of the asymptote is important 
in distinguishing them from the IBT. The wave velocity v is directly 
affected by the relative permittivity of the background medium; the 
directional feature of the target echo is related to wave velocity v. 

According to Eqs. (1) and (2), the asymptote of a hyperbola can 
be written as follows:

(18)

Fig. 5: Echoes and statistical features of energy:(a) PT echo simulation result; (b) 
Statistical feature of the CT energy of PT echo; (c) Simulation result of IBT echo; 
(d) Statistical feature of the energy of IBT echo

Fig. 6: Comparison between different targets on Scale 3
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The discretization of time and survey direction is needed in 
mesh division. Given that trace interval between A-scans is Δx, 
and the time interval between the samples in an A-scan isΔt, the 
discretized asymptote can be expressed as follows:

(19)

where n and m denote the horizontal and vertical grids, re-
spectively; x=n∆x; and t=m∆x.

For example, given that sample window t=6 ns, sample points 
are 1000 points, ∆t=6x10-12 ns, and trace interval ∆x=2 mm. On 
Scale 3, directional resolution is 2p/32, and an interval [−p/2, 0] 
is divided into 8 parts equally, representing directions l from 5 
to 12, respectively. Generally, the relative permittivity er of the 
background medium lies in interval [1, 25]. Thus, given that  
er ={1,4,9,16,25} forward simulations are processed. The energy 
distribution is shown in Fig. 11. The blue and red lines represent 
the theory distribution and simulated results, respectively. When 
relative permittivity er changes, the energy feature of the hy-
perbola asymptote is mainly distributed in the interval [−7p/16, 
−p/2] (l={11,12})). However, distribution changes occur on  
er [4,9]. Therefore, velocity estimation or relative permittivity 
detection should be implemented before the construction of the 
feature subspace.

4.3. INFLUENCE OF TARGET ECHO PHASE ON THE 
FEATURE

Different echo phases may occur in various surfaces. Accord-
ing to the law of reflection regarding EM wave, reflection coef-
ficient r

i
 can be expressed as

(20)

where n
i
 denotes the wave impedance of the ith layer medium. 

When h
i+1 

-h
i
>0, r

i 
is positive, and the echo phase of the reflec-

tion wave is the same to that of the 
incident wave (0° phase). By contrast, 
when h

i+1 
-h

i
<0, r

i
, is negative, and 

the echo phase of the reflection wave 
is opposite to that of the incident 
wave (180° phase). For example, given 
that the background medium of PT is 
er=1, the target medium is er=9, and 
forward simulations are processed. 
The forward and reverse results are 
shown in Figs. 12(a) and 12(b). Fig. 

12(c) shows the processing result of the statistical features of the 
energy. The two curves reveal that the energy feature is exactly the 
same in every direction. Thus, the proposed algorithm is insensitive 
to echo phase, and is applicable to 0° and 180° phases.

4.4 INFLUENCE OF VOID SIZE ON CLASSIFICATION
The length lV of void plays an important role in classification 

based on direction. When the length lV approaches zero, the void 
target is regarded as a PT; when the length lV approaches infinity, 
the void target is regarded as an IBT; and when the length lV is 
between zero and infinite, the void target is regarded as an FBT 
or HIBT. Thus, void size affects classification. Simulations are con-
ducted to analyze the accuracy of classification.

Given that background medium parameters are (er, µr, 
s)=(6,1,0.1), the grid size is 2 mm × 4 mm. Moreover, given that 
void length for PT is 1 cm and that for FBT is 20 cm, then simula-
tions are performed when the length lV is equal to {1, 2, 3, 4, 5, 6, 
7, 8, 15, 20}. Classification results are shown in Table 1, when the 
void length is less than or equal to 4 cm, the voids are classified as 
PT, and others are classified as FBT.

In detecting railway roadbed diseases with ballastless track, 
when the length of void disease is less than 8 cm in CA mortar, the 
stress of the track structure is not more than its strength, and the 
track structure is considered safe. Thus, the proposed algorithm 
satisfies the requirements of identifying railway roadbed diseases.

5. CONCLUSION
To overcome the difficulty of target recognition caused by the 

complexity of target echo, a feature extraction and target identifica-
tion method based on the directional feature of a target echo were 
proposed in this study. The principal directional features of target 
echoes were initially analyzed. Then, feature extraction of shallow sub-
surface targets and identification method were performed based on 
the directional selectivity of CT. The following conclusions are drawn:

(1) �The direction of the target echo is an important feature of 
GPR. For PT echo, the direction of the hyperbolic asymptote 

Fig. 11: Energy distribution between different permittivities

Fig. 12: Features comparison between the forward and reverse simulations on Scale 3: (a) Forward direction 
simulation; (b) Reverse direction simulation; (c) Processing results on Scale 3

Fig. 10: Distances between the sample echo and the simulated echoes
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is the principal directional feature. For IBT echo, the direc-
tion of the horizon is the principal directional feature. For 
FBT and HIBT, the directional features are the linear combi-
nation of PT and IBT.

(2) �The statistical feature of the energy on the Scale 3 of CT 
represents the energy distribution of different targets in 
various directions. Calculation results show that the energy 
in the horizon distributes in directions l={4,5,20,21}. The 
energy in the asymptote is related to relative permittivity 
and is symmetric with directions l={12,13}/{28,29}.

(3) �The 32-dimension feature subspace based on the statis-
tical feature of energy and the NN method are effective 
and efficient in classifying subsurface targets. The forward 
simulation and field experiment show that the proposed 
method is insensitive to the echo phase and satisfies the 
requirements of identifying railway subgrade diseases.

The classification method used in this study overcomes the 
problems of low efficiency and high missed/false alarm rate by 
manual. It is significant to generalize GPR to detect the diseases 
in railway subgrade, which has the properties of long distance 
and large data. Howerver, the objects in this study are point and 
banded sharps along the survey line. The applicability of the pro-
posed method to singular sharps, for example ball and funnel, 
needs further discussion. Meanwhile, the large amount of disease 
detection data in railway roadbed leads to the requirement of the 
sparse representation , such as the types, shapes, and locations of 
diseases. Thus, this study is only a part of disease sparse repre-
sentation, and the rest of the research should be further explored.
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Void length 
lV (cm) NT PT FBT IBT HBTL HBTR Result

1 0.231 0 0.023 0.537 0.131 0.145 PT
2 0.239 0.013 0.029 0.546 0.134 0.149 PT
3 0.243 0.023 0.035 0.550 0.141 0.157 PT
4 0.237 0.024 0.027 0.546 0.150 0.164 PT
5 0.231 0.025 0.020 0.539 0.152 0.167 FBT
6 0.221 0.040 0.023 0.531 0.163 0.178 FBT
7 0.204 0.070 0.050 0.517 0.177 0.190 FBT
8 0.215 0.045 0.027 0.522 0.149 0.161 FBT
15 0.228 0.019 0.011 0.536 0.142 0.156 FBT
20 0.224 0.023 0 0.535 0.146 0.159 FBT

Table 1: Influence of void size on identification
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