ELECTRIC VEHICLE AUTONOMY ESTIMATION CONSIDERING DRIVING STYLE

Authors

  • Alberto Díaz-Álvarez UNIVERSIDAD POLITÉCNICA DE MADRID. Instituto Universitario de Investigación del Automóvil (INSIA). Campus Sur de la UPM. Carretera de Valencia, km. 7 – 28031 Madrid Author
  • Francisco Serradilla-García UNIVERSIDAD POLITÉCNICA DE MADRID. Instituto Universitario de Investigación del Automóvil (INSIA). Campus Sur de la UPM. Carretera de Valencia, km. 7 – 28031 Madrid Author
  • José Javier Anaya-Catalán UNIVERSIDAD POLITÉCNICA DE MADRID. Instituto Universitario de Investigación del Automóvil (INSIA). Campus Sur de la UPM. Carretera de Valencia, km. 7 – 28031 Madrid Author
  • Felipe Jiménez-Alonso UNIVERSIDAD POLITÉCNICA DE MADRID. Instituto Universitario de Investigación del Automóvil (INSIA). Campus Sur de la UPM. Carretera de Valencia, km. 7 – 28031 Madrid Author
  • José Eugenio Naranjo-Hernández UNIVERSIDAD POLITÉCNICA DE MADRID. Instituto Universitario de Investigación del Automóvil (INSIA). Campus Sur de la UPM. Carretera de Valencia, km. 7 – 28031 Madrid Author

Keywords:

Eco-driving, Smartphone, GPS, Neural Networks, Energy Efficiency, Driver Modeling

Abstract

This paper describes a process for estimating the

autonomy of electric vehicles based on driver

behavior.

To do this, 11 drivers will be monitored while

driving across an urban route, collecting some

parameters smartphones and their GPS and

accelerometer devices and processing them for

the extraction of a set of indicators that will

determine the driver’s driving profile. These

indicators, along with the consumption of the

vehicle, will be used to train a neural network to

predict variables such as passenger comfort and

the expected consumption in real traffic

conditions.

Since there is a direct relationship between

energy efficiency and aggressive driving, this

model is also suitable for the scope of driving

safety.

Downloads

Published

2024-05-24

Issue

Section

Articles